University of Jos, Nigeria
* Corresponding author
Abubakar Tafawa Balewa University, Nigeria
University of Jos, Nigeria
Plateau State University, Nigeria

Article Main Content

This study was designed to assess the effect of relative metals concentrations, pH and species variations on the uptake of copper (Cu), iron (Fe), calcium (Ca) and magnesium (Mg) in water, fish and fish parts to monitor the toxicity potentials of consuming these fish. The water and fish samples were obtained from four locations (Farin gada stream, Lamingo Dam, Nasco pond and mining pond) in Jos Metropolis, Plateau State, Nigeria, Water and six fish species samples were collected from the four locations, digested and analysed using Buck Scientific Atomic Absorption Spectrophotometer, model 210VGP. Results show that pH of the water sources from Farin gada stream, Lamingo Dam, Nasco pond and mining pond were 7.1, 6.5, 7.0 and 7.2 respectively. The concentrations of Cu in the water sources were 0.030±0.001, 0.010±0.003, 0.020±0.000, 0.027±0.000 in Farin Gada stream, Nasco pond, Lamingo Dam and mining pond respectively; Fe were 2.2±0.1, 0.0±0,000, 0.2±0.003 and 0.3±0.001; Ca were 305±3.0, 37±1.5, 110±3.5 and 163±4.5; Mg were 160±3.6, 126±4.8, 79±1.9 and 95±2.8 in that order above. Different fish species from the same water source bioaccumulated Cu, Fe, Ca and Mg at varying concentrations depending on source, fish species or the physicochemical properties. Different fish species have different preferences as to which part (body, gills and head) of the fish these metals are concentrated more. Lamingo Dam had five fish species, mining pond had three, while Nasco pond and Farin Gada stream had one each. The results established that uptake and bioavailability of Cu, Fe, Ca and Mg by fish in water depend on species variation, relative concentration of the metals in the source of water and the pH of the water.

References

  1. V. Idris, O. Rodriguez de la Fuente, A. Mascarque and J. M. Rojo (2018). Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces. Physics Rev. Lett. 100(10): 1-4.
     Google Scholar
  2. J. D. Dabak, J. L. Dabal, A. G. Jakwa and E. A. Ajiji (2019). Assessment of Levels of Some Metals in Water and Fish from Jos, Plateau State, Nigeria. Asian Journal of Environment and Ecology 10(3): 1-11.
     Google Scholar
  3. M. M.Zeitoun and E. E. Mehana (2014). Impact of water pollution with heavy metals on fish health: Overview and Updates. Glob. Veter 12(2): 219 – 231.
     Google Scholar
  4. W. Wang, Z. Zhang, G. Yang (2014). Wang Q. Health risk assessment of Chinese consumers to nickel via dietary intake of foodstuffs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(11): 1861-1871.
     Google Scholar
  5. H. Sodango, X. Feng, T. Larssen, G. Qiu and R. D.Vogt (2018). Rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Persp. 118(9): 1183-1188.
     Google Scholar
  6. S. L. O’Neal and W. Zheng (2015). Current Environmental Health Rep. Authur manuscript; available in PMC 2015 Sep 1. Curr. Environ. Health Rep. 2(3): 315-328.
     Google Scholar
  7. K. A. Fox, T. M. Phillips, J. H. Yanta and M. G. Abesamis (2016). Fatal cobalt toxicity after total hip arthroplasty revision for fractured ceramic components. Clin Toxicol (Phila). 54 (9): 874-877.
     Google Scholar
  8. R. Achmad, B. Budiawan and E. J. Auerkari (2017). Effects of Chromium on Human Body. J. Ann. Res. & Rev. 13: 1-8.
     Google Scholar
  9. K. M. El-Moselhy, A. I. Othman, H. Abd El-Azem and M. E. A. El-Metwally (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences 1(2): 97-105.
     Google Scholar
  10. S. Rajeshkumar and X. Li (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep. 5: 288–295.
     Google Scholar
  11. A. A. Bawuro, R. B. Voegborlo and A. A. Adimado (2018). Bioaccumulation of Heavy Metals in Some Tissues ofFish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health. 2018: 1-7.
     Google Scholar
  12. O. Acar, O. M. Kalfa, O. Yalçinkaya and A. R. Türker (2010). Calcium, Magnesium, Iron, Zinc, Cadmium, Lead, Copper and Chromium determinations in brown meagre (Sciaena Umbra) bone stone by Flame and Electrothermal Atomic Absorption Spectrometry. G.U. Journal of Science 23(1): 41-48.
     Google Scholar
  13. J. D. Dabak, S. Y. Gazuwa and G. A. Ubom (2015). The nephroprotective effects of graded concentrations of calcium and magnesium on nephrotoxicities a constant toxic concentration of cadmium and lead in rats. Int. J. Bioch. Res. Rev. 7(1):36-44.
     Google Scholar
  14. A. O. Sun and I. Musa (2018). Pollution Assessment of Thelvove Basin of Lakes Kanji / Jebba Nigeria: Heavy Metals Status of the Waters, Sediments and Fishes. Environ. Geochem. Health. 26: 273-281.
     Google Scholar
  15. F. Zivkovic, G. Forghani and A. Qishlaqi (2018). Assessment of heavy metals contamination in water and surface sediment of the Maharlu Saline water. SW Dan. Iranian J. of Sci. Technol. Transact. A 33 (A1): 43-55.
     Google Scholar
  16. P. V. Krishna, V. Jyothirmayi and R. K. Madhysydhana (2014). Human health risk assessment of heavy metal accumulation through fish consumption from Machilipatnan Coast, Andhra Pradesh, India” Int. Res. J. Pub. Environ. Health. 1(5): 12-25.
     Google Scholar
  17. M. M. N. Authman, M. S. Zaki, E. A. Khallaf and H. H. Abbas (2015). Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution. J Aquac Res Development. 6(4): 1-13. DOI: 10.4172/2155-9546.1000328.
     Google Scholar
  18. M. Anim-Gyampo, M. Kumi and M. S. M. Zango (2013). Heavy Metals Concentrations in Some Selected Fish Species in Tono Irrigation Reservoir in Navorong. Ghana. J. Environ. Earth Sci. 3(1): 109-119.
     Google Scholar
  19. M. D. Sa’id (2006). Determination of Lithium, Sodium, and Potassium in Four Different Species of Fish. Biol. Environ. Sci. J. Tropics 3(4): 61 – 68.
     Google Scholar
  20. Z. S. Baharoma and M. Y. Ishak (2015). Determination of heavy metal accumulation in fish species in Galas River, Kelantan and Beranang mining pool, Selangor. Procedia Environmental Sciences. 30: 320 – 325.
     Google Scholar
  21. M. Uaf (2017). Impact of Heavy Metals on Plants and Animals in Relation to Sewage Water – A Review. Science, Technology and Development 36(4):215-226.
     Google Scholar
  22. A. R. Zabotto, W. S. França, M. Domingos, M. C. S. Rinaldi, S. Kanashiro, M. L. Ferreira and A. R. Tavares (2020). Copper Accumulation and Distribution in Two Arboreal Species of the Atlantic Forest. Floresta e Ambiente. 27(1): e20190027.
     Google Scholar
  23. G. DalCorso, E. Fasani, A. Manara, G. Visioli and A. Furini (2019). Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 20: 3412; doi:10.3390/ijms20143412.
     Google Scholar
  24. M. S. Hossain, P. Roy, M. Islam, A. Z. Chowdhury, Z. Fardous, M. A. Rahman, A. S. M. Salfullah et al. (2017). Human Health Risk of Chromium Intake from Consumption of Poultry Meat and Eggs in Dhaka, Bangladesh. J Health Pollution 7(14): 30-36.
     Google Scholar
  25. H. Azmat, M. Javed, S. M. Husssain, A. Javid and G. Jabeen (2016). Impacts of physico-chemical parameters on fish grown under heavy metal stress. Pakistan J. Zool. 48(3): 795-807.
     Google Scholar
  26. J. F. Akintujoye, C. I. Anumudu and H. O. Awobode (2013). Assessment of heavy metal residues in water, fish tissue and human blood from Ubeji, Warri, Delta State, Nigeria. J. Appl. Sci. Environ. Manage 17 (2): 291-297.
     Google Scholar
  27. M. O. Nwabunike (2016). The Effects of Bioaccumulation of Heavy Metals on Fish Fin Over Two Years. J Fisheries Livest. Prod. 4: 170. doi: 10.4172/2332-2608.1000170
     Google Scholar
  28. M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew and K. N. Beeregowda (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2): 60-72.
     Google Scholar
  29. L. H. Skibsted (2016). Mineral nutrient interaction: Improving bioavailability of calcium and iron. Food Sci Biotechnol. 25(5): 1233-1241.
     Google Scholar
  30. N. Scheers (2013). Regulatory effects of Cu, Zn, and Ca on Fe absorption: The intricate play between nutrients. Nutrients. 5: 957–970.
     Google Scholar
  31. S. Hoppe, M. Sundbom, H. Borg and M. Breitholtz (2015). Predictions of Cu toxicity in three aquatic species using bioavailability tools in four Swedish soft freshwaters. Environ Sci Eur. 27(1): 25.
     Google Scholar
  32. S. Afshan, S. Ali, U. S. Ameen, M. Farid, S. A. Bharwana, F. Hannan and R. Ahmad (2014). Effect of Different Heavy Metal Pollution on Fish. Res J. Chem. Environ. Sci. 2(2): 35-40.
     Google Scholar
  33. P. Cadmus, S. F. Brinkman and M. K. May (2018). Chronic Toxicity of Ferric Iron. Archives of Environmental Contamination and Toxicology 74: 605–615.
     Google Scholar