Influence of Species Differences, Relative Metals Concentrations and pH on Uptake of Metals in Water by Fish
Article Main Content
This study was designed to assess the effect of relative metals concentrations, pH and species variations on the uptake of copper (Cu), iron (Fe), calcium (Ca) and magnesium (Mg) in water, fish and fish parts to monitor the toxicity potentials of consuming these fish. The water and fish samples were obtained from four locations (Farin gada stream, Lamingo Dam, Nasco pond and mining pond) in Jos Metropolis, Plateau State, Nigeria, Water and six fish species samples were collected from the four locations, digested and analysed using Buck Scientific Atomic Absorption Spectrophotometer, model 210VGP. Results show that pH of the water sources from Farin gada stream, Lamingo Dam, Nasco pond and mining pond were 7.1, 6.5, 7.0 and 7.2 respectively. The concentrations of Cu in the water sources were 0.030±0.001, 0.010±0.003, 0.020±0.000, 0.027±0.000 in Farin Gada stream, Nasco pond, Lamingo Dam and mining pond respectively; Fe were 2.2±0.1, 0.0±0,000, 0.2±0.003 and 0.3±0.001; Ca were 305±3.0, 37±1.5, 110±3.5 and 163±4.5; Mg were 160±3.6, 126±4.8, 79±1.9 and 95±2.8 in that order above. Different fish species from the same water source bioaccumulated Cu, Fe, Ca and Mg at varying concentrations depending on source, fish species or the physicochemical properties. Different fish species have different preferences as to which part (body, gills and head) of the fish these metals are concentrated more. Lamingo Dam had five fish species, mining pond had three, while Nasco pond and Farin Gada stream had one each. The results established that uptake and bioavailability of Cu, Fe, Ca and Mg by fish in water depend on species variation, relative concentration of the metals in the source of water and the pH of the water.
References
-
V. Idris, O. Rodriguez de la Fuente, A. Mascarque and J. M. Rojo (2018). Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces. Physics Rev. Lett. 100(10): 1-4.
Google Scholar
1
-
J. D. Dabak, J. L. Dabal, A. G. Jakwa and E. A. Ajiji (2019). Assessment of Levels of Some Metals in Water and Fish from Jos, Plateau State, Nigeria. Asian Journal of Environment and Ecology 10(3): 1-11.
Google Scholar
2
-
M. M.Zeitoun and E. E. Mehana (2014). Impact of water pollution with heavy metals on fish health: Overview and Updates. Glob. Veter 12(2): 219 – 231.
Google Scholar
3
-
W. Wang, Z. Zhang, G. Yang (2014). Wang Q. Health risk assessment of Chinese consumers to nickel via dietary intake of foodstuffs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(11): 1861-1871.
Google Scholar
4
-
H. Sodango, X. Feng, T. Larssen, G. Qiu and R. D.Vogt (2018). Rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Persp. 118(9): 1183-1188.
Google Scholar
5
-
S. L. O’Neal and W. Zheng (2015). Current Environmental Health Rep. Authur manuscript; available in PMC 2015 Sep 1. Curr. Environ. Health Rep. 2(3): 315-328.
Google Scholar
6
-
K. A. Fox, T. M. Phillips, J. H. Yanta and M. G. Abesamis (2016). Fatal cobalt toxicity after total hip arthroplasty revision for fractured ceramic components. Clin Toxicol (Phila). 54 (9): 874-877.
Google Scholar
7
-
R. Achmad, B. Budiawan and E. J. Auerkari (2017). Effects of Chromium on Human Body. J. Ann. Res. & Rev. 13: 1-8.
Google Scholar
8
-
K. M. El-Moselhy, A. I. Othman, H. Abd El-Azem and M. E. A. El-Metwally (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences 1(2): 97-105.
Google Scholar
9
-
S. Rajeshkumar and X. Li (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep. 5: 288–295.
Google Scholar
10
-
A. A. Bawuro, R. B. Voegborlo and A. A. Adimado (2018). Bioaccumulation of Heavy Metals in Some Tissues ofFish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health. 2018: 1-7.
Google Scholar
11
-
O. Acar, O. M. Kalfa, O. Yalçinkaya and A. R. Türker (2010). Calcium, Magnesium, Iron, Zinc, Cadmium, Lead, Copper and Chromium determinations in brown meagre (Sciaena Umbra) bone stone by Flame and Electrothermal Atomic Absorption Spectrometry. G.U. Journal of Science 23(1): 41-48.
Google Scholar
12
-
J. D. Dabak, S. Y. Gazuwa and G. A. Ubom (2015). The nephroprotective effects of graded concentrations of calcium and magnesium on nephrotoxicities a constant toxic concentration of cadmium and lead in rats. Int. J. Bioch. Res. Rev. 7(1):36-44.
Google Scholar
13
-
A. O. Sun and I. Musa (2018). Pollution Assessment of Thelvove Basin of Lakes Kanji / Jebba Nigeria: Heavy Metals Status of the Waters, Sediments and Fishes. Environ. Geochem. Health. 26: 273-281.
Google Scholar
14
-
F. Zivkovic, G. Forghani and A. Qishlaqi (2018). Assessment of heavy metals contamination in water and surface sediment of the Maharlu Saline water. SW Dan. Iranian J. of Sci. Technol. Transact. A 33 (A1): 43-55.
Google Scholar
15
-
P. V. Krishna, V. Jyothirmayi and R. K. Madhysydhana (2014). Human health risk assessment of heavy metal accumulation through fish consumption from Machilipatnan Coast, Andhra Pradesh, India” Int. Res. J. Pub. Environ. Health. 1(5): 12-25.
Google Scholar
16
-
M. M. N. Authman, M. S. Zaki, E. A. Khallaf and H. H. Abbas (2015). Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution. J Aquac Res Development. 6(4): 1-13. DOI: 10.4172/2155-9546.1000328.
Google Scholar
17
-
M. Anim-Gyampo, M. Kumi and M. S. M. Zango (2013). Heavy Metals Concentrations in Some Selected Fish Species in Tono Irrigation Reservoir in Navorong. Ghana. J. Environ. Earth Sci. 3(1): 109-119.
Google Scholar
18
-
M. D. Sa’id (2006). Determination of Lithium, Sodium, and Potassium in Four Different Species of Fish. Biol. Environ. Sci. J. Tropics 3(4): 61 – 68.
Google Scholar
19
-
Z. S. Baharoma and M. Y. Ishak (2015). Determination of heavy metal accumulation in fish species in Galas River, Kelantan and Beranang mining pool, Selangor. Procedia Environmental Sciences. 30: 320 – 325.
Google Scholar
20
-
M. Uaf (2017). Impact of Heavy Metals on Plants and Animals in Relation to Sewage Water – A Review. Science, Technology and Development 36(4):215-226.
Google Scholar
21
-
A. R. Zabotto, W. S. França, M. Domingos, M. C. S. Rinaldi, S. Kanashiro, M. L. Ferreira and A. R. Tavares (2020). Copper Accumulation and Distribution in Two Arboreal Species of the Atlantic Forest. Floresta e Ambiente. 27(1): e20190027.
Google Scholar
22
-
G. DalCorso, E. Fasani, A. Manara, G. Visioli and A. Furini (2019). Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 20: 3412; doi:10.3390/ijms20143412.
Google Scholar
23
-
M. S. Hossain, P. Roy, M. Islam, A. Z. Chowdhury, Z. Fardous, M. A. Rahman, A. S. M. Salfullah et al. (2017). Human Health Risk of Chromium Intake from Consumption of Poultry Meat and Eggs in Dhaka, Bangladesh. J Health Pollution 7(14): 30-36.
Google Scholar
24
-
H. Azmat, M. Javed, S. M. Husssain, A. Javid and G. Jabeen (2016). Impacts of physico-chemical parameters on fish grown under heavy metal stress. Pakistan J. Zool. 48(3): 795-807.
Google Scholar
25
-
J. F. Akintujoye, C. I. Anumudu and H. O. Awobode (2013). Assessment of heavy metal residues in water, fish tissue and human blood from Ubeji, Warri, Delta State, Nigeria. J. Appl. Sci. Environ. Manage 17 (2): 291-297.
Google Scholar
26
-
M. O. Nwabunike (2016). The Effects of Bioaccumulation of Heavy Metals on Fish Fin Over Two Years. J Fisheries Livest. Prod. 4: 170. doi: 10.4172/2332-2608.1000170
Google Scholar
27
-
M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew and K. N. Beeregowda (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2): 60-72.
Google Scholar
28
-
L. H. Skibsted (2016). Mineral nutrient interaction: Improving bioavailability of calcium and iron. Food Sci Biotechnol. 25(5): 1233-1241.
Google Scholar
29
-
N. Scheers (2013). Regulatory effects of Cu, Zn, and Ca on Fe absorption: The intricate play between nutrients. Nutrients. 5: 957–970.
Google Scholar
30
-
S. Hoppe, M. Sundbom, H. Borg and M. Breitholtz (2015). Predictions of Cu toxicity in three aquatic species using bioavailability tools in four Swedish soft freshwaters. Environ Sci Eur. 27(1): 25.
Google Scholar
31
-
S. Afshan, S. Ali, U. S. Ameen, M. Farid, S. A. Bharwana, F. Hannan and R. Ahmad (2014). Effect of Different Heavy Metal Pollution on Fish. Res J. Chem. Environ. Sci. 2(2): 35-40.
Google Scholar
32
-
P. Cadmus, S. F. Brinkman and M. K. May (2018). Chronic Toxicity of Ferric Iron. Archives of Environmental Contamination and Toxicology 74: 605–615.
Google Scholar
33