##plugins.themes.bootstrap3.article.main##

With an area of 2,339 km2, the Carmo Natural Park is located in the eastern part of the São Paulo metropolitan region and offers a range of basic services for visitors to enjoy a variety of cultural attractions and outdoor sports activities. From a conservation perspective, the geological units and structures that have been cataloged also have high educational potential. These records reveal tectonic events and/or metamorphic processes that occurred hundreds of millions of years ago and can be used for a variety of academic proposals and different groups of people to develop new cognitive skills and understand the geological processes that have shaped the landscape of the Earth’s surface. A clear understanding of the mechanisms by which geological features were formed will help the general population find effective solutions to the challenges posed by different geological processes that directly affect daily lives. In light of what has been mentioned, and given that the selected geosites bring together lithological units that provide ideal conditions to illustrate and explain a set of geological processes that have occurred at different scales and magnitudes, the integration of these data with other areas of knowledge, in particular with those of land use planning, should allow the implementation of programs to minimize geological risks, environmental protection, and rational use of non-renewable natural resource.

References

  1. Kogel JE, Trivedi NC, Barker JM, Krukowski ST. Industrial minerals and rocks: commodities, markets, and uses. Littleton: Society for Mining, Metallurgy, and Exploration, Inc; 2006.
     Google Scholar
  2. Walther J. Earth’s material resource. Burlington: Jones & Bartlett Learning; 2014.
     Google Scholar
  3. Ayer JC. Sustainability: An Environmental Science Perspective. New York: Taylor &Francis Group; 2017.
     Google Scholar
  4. Zouros N. Global geoparks networks and the new UNESCO global geoparks programme. Bul. Geol. Soc. Greece, 2016; 50(1):284–292. https://doi.org/10.12681/bgsg.11729
     Google Scholar
  5. Benton M. Europa UNESCO Geopark: Introduction Part I. Geocons. Res. 2021; 4(1):1-5. doi: 10.30486/gcr.2021.683780.
     Google Scholar
  6. Gordon JE. Geoheritage, geotourism and the cultural landscape: enhancing the Visitor Experience and Promoting. Geocons. Geosc. 2018, 8, 136. https://doi.org/10.3390/geosciences8040136.
     Google Scholar
  7. Gray JM. Geodiversity, Geoheritage and Geoconservation for Society. Inter. J. Geoh. and Parks. 2019; 7(4):226-236. https://doi.org/10.1016/j.ijgeop.2019.11.001
     Google Scholar
  8. Sharples C. Concepts and principles of geoconservation. Hobart: Tasmanian Parks & Wildlife Service; 2002.
     Google Scholar
  9. Brilha JBR. Património geológico e geoconservação. Braga: Palimage Editores; 2005.
     Google Scholar
  10. Gray JM. Geodiversity: valuing and conserving abiotic nature. Chichester: Wiley-Blackwell; 2013.
     Google Scholar
  11. IUGS (2018) Heritage Sites and Collections Subcommission. [updated 2022 February 15, cited 2022 July 10]. Available from https://geoheritage-iugs.mnhn.fr/.
     Google Scholar
  12. SIGEP. Sítios Geológicos e Paleontológicos do Brasil. Volume I. Brasilia: DNPM/CPRM/SIGEP; 2002.
     Google Scholar
  13. SIGEP. Sítios Geológicos e Paleontológicos do Brasil. Volume II. Brasilia: DNPM/CPRM/SIGEP; 2009.
     Google Scholar
  14. SIGEP. Sítios Geológicos e Paleontológicos do Brasil. Volume III. Brasilia: DNPM/CPRM/SIGEP; 2013.
     Google Scholar
  15. Peixoto CAB. Geodiversidade do Estado de São Paulo. CPRM: Serviço Geológico do Brasil, São Paulo; 2010.
     Google Scholar
  16. Ribeiro LMA, Garcia MGM, Higa KK. The geological heritage of the state of São Paulo: potential geosites and as a contribution to the Brazilian nacional inventory. Braz. J. Geol. 2021; 4(1):45-54.
     Google Scholar
  17. Letta LA. Relevância da diversidade geológica do Parque Estadual do Jaraguá para as atividades de ensino e divulgação das Ciências da Terra. Undergraduate Dissertation, University of São Paulo; 2009.
     Google Scholar
  18. Pletsch MAJS, Velázquez VF, Azevedo Sobrinho JM, Guedes ACM, Novaes RLP. Potencialidades científica, educacional e lúdica dos registros geológicos presentes no Parque Municipal Anhanguera, São Paulo, Brasil. Rev. Geog. Am. Cen. 2013; 51:189-214.
     Google Scholar
  19. Pletsch MAJS, Velázquez VF, Azevedo Sobrinho JM, Borges GB, Coutinho CS. Geological and geomorphological elements as management tools in protected areas open to public use: a case study of the Pedroso's Natural Muncipal Park, Santo André, Brazil. GeoJ. Tour. Geos. 2014; 14:112-125.
     Google Scholar
  20. Munhoz EAP, Lobo HAS. Proteção e conservação da geodiversidade na legislação brasileira. Geonomos, 2018; doi: https://doi.org/10.18285/geonomos.v26i1.1236
     Google Scholar
  21. Gordon JE, Crofts R, Diaz-Matinez E, Woo KS. Enhancing the Role of Geoconservation in Protected Area Management and Nature. Conser. Geoh. 2018; 10:191-203.
     Google Scholar
  22. Brilha JBR. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: a review. Geoheritage, 2016; 8:114-134.
     Google Scholar
  23. SMVMA. Parque do Carmo. [updated 2022 April 15, cited 2022 May 10]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/meio_ambiente/parques/regiao_leste/index.php?p=5734.
     Google Scholar
  24. Almeida VV, Loreti Jr R. Programa geologia, mineração e transformação mineral. Ser.Geol. Bras., Série Rochas e Minerais, 2019; 24:103.
     Google Scholar
  25. Cordani UG, Pimentel MM, Araujo CEG, Fuck RA. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Braz. J. Geol. 2013; 43(3):583-597.
     Google Scholar
  26. Heilbron M, Machado N. Timing of terrane accretion in the Neoproterozoic–Eopaleozoic Ribeira orogen (se Brazil). Precam. Res. 2003; 125:87-112.
     Google Scholar
  27. Brito Neve BB, Fuck RA, Pimentel MM. The Brasiliano collage in South America: a review. Braz. J. Geol. 2014; 44(3):493-518.
     Google Scholar
  28. Basei MAS, Frimmel HE, Campos Neto MC, Araujo CEG, Castro NA, Passarelli CR. The tectonic history of the southern Adamastor ocean based on a correlation of the Kaoko and Dom Feliciano Belts. In: Geology of Southwest Gondwana. Siegesmund et al. (eds), Switzerland: Springer International Publishing AG, 2018; pp. 63-88.
     Google Scholar
  29. Riccomini C, Sant’Anna LG, Ferrari A. Evolução geológica do rift continental do sudeste do Brasil. In: Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio de Almeida. Mansseto-Neto et al. (orgs), São Paulo: Beca, 2004; pp. 382-406.
     Google Scholar
  30. Zalán VP, Oliveira JAB. Origem e evolução estrutural do sistema de riftes cenozoicos do Sudeste do Brasil. Bol. Geoc. Petrobr. 2005; 13:269-300.
     Google Scholar
  31. Sadowski GR, Campanha GAC. Grandes falhas no Brasil continental. In: Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio de Almeida. Mansseto-Neto et al. (orgs), São Paulo: Beca, 2004; pp. 407-434.
     Google Scholar
  32. Campanha GAC, Faleiros FM, Gawood PA, Cabrita DIG, Ribeiro BV, Basei MAS. The Tonian Embu Complex in the Ribeira Belt (Brazil): revision, depositional age and setting in Rodinia and West Gondwana. Precam. Res. 2019; 320:31-45.
     Google Scholar
  33. Coutinho JMV. Petrologia do pré-cambriano em São Paulo e arredores. Bol. Inst. Geoc. 1984; 3:5-99.
     Google Scholar
  34. Rodriguez SK. Geologia urbana da região metropolitana de São Paulo. PhD Thesis, Univeristy of the São Paulo; 1998.
     Google Scholar
  35. Ross JS, Moroz IC. Mapa geomorfológico do Estado de São Paulo. Rev. Depart. Geogr. 2011; 10:41-58. https://doi.org/10.7154/RDG.1996.0010.0004
     Google Scholar
  36. Garcia MGM. Patrimônio geológico paulista. Uma viagem no tempo geológico em 50 geossitios. São Paulo: Funesp; 2021.
     Google Scholar
  37. Allmendinger RW. Modern structural practice. [updated 2021 December 15, cited 2022 February 10]. Available from http://www.geo.cornell.edu/geology/faculty/RWA/structure-lab-manual/downloads.html.
     Google Scholar
  38. Bucher K, Grapes R. Petrogenesis of metamorphic rocks. Berlin: Springer-Verlag; 2011.
     Google Scholar
  39. Katz Y, Weinberger R, Aydin A. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. J. Struc. Geol. 2004; 26:491-501.
     Google Scholar
  40. Woodcock NH, Schubert C. Continental strike-slip tectonics. In: Continental deformation. Hancock PL (ed.), Oxford: Pergamon Press; 1994, pp. 251-263.
     Google Scholar
  41. Borradaile GJ, Bayly MB, Powell C M. Atlas of deformational and metamorphic rock fabrics. Berlin: Springer-Verlag; 1982.
     Google Scholar
  42. Fairbridge RW, Finkl CW. Tropical stone lines and podzolized sand plains as paleoclimatic indicators for weathered cratons. Quat. Sci. Rev. 1984; 3:41-72.
     Google Scholar
  43. Gregory PJ. Plant roots: growth, activity and interaction with soils. Oxford: Blackwell Publishing Ltd; 2006.
     Google Scholar
  44. Pawlik L, Phillips JD, Samonil P. Roots, rock, and regolith: biomechanical and biochemical weathering by trees and its impact on hillslopes - a critical literature review. Earth-Sci. Rev. 2016; 159:142-159.
     Google Scholar
  45. Prado RM. Mineral nutrition of tropical plants. Switzerland: Springer Nature Switzerland AG; 2021.
     Google Scholar
  46. Reed JJ. Mylonites, cataclasites, and associated rocks along the Alpine fault, South Island, New Zealand, New Zealand. J. Geol. Geophy. 1964;7:645-684.
     Google Scholar
  47. Higgins MW. Cataclastic rocks. Geol. Surv. Prof. Paper, 1971; 687:97.
     Google Scholar
  48. Beck L, Cable TT, Knudson DM. Interpreting cultural and natural heritage: for a better world. United States: Sagamore-Venture Publishing LLC; 2018.
     Google Scholar
  49. Handy RL, Spangler MG. Geotechnical Engineering: Soil and Foundation Principles and Practice. New York: McGraw-Hill Education; 2007.
     Google Scholar
  50. Bard JP. Microtextures of Igneous and Metamorphic Rocks. Holland: D. Reidel Publishing Company; 1986.
     Google Scholar
  51. Brady NC, Weil RR. Elements of the Nature and Properties of Soils. Edinburgh: Pearson Education Limited; 2014.
     Google Scholar
  52. Alsop GI, Holsworth RE, McCaffrey KJW, Hand M. Flow process in fault and shear zone. Lon. Geol. Soc. Spec. Publ. 2004; 224.
     Google Scholar


Most read articles by the same author(s)