##plugins.themes.bootstrap3.article.main##

The Itu-Cabreúva region is located about 90 km northwest of the São Paulo city center. The geological setting is characterized by the expressive occurrence of Neoproterozoic granitic rocks. These intrusive rocks form large plutons that have given rise to flattened hills, valleys with concave-convex slopes, and superficial drainage systems. As part of this larger framework, several smaller landforms with unique appearances occur, which can be categorized into six groups: nubbin, boulder, balanced rock, castle koppie, cave, and minor form. Although these reliefs were formed under similar weathering conditions, the research results show that the physical properties of the lithology and the nature and density of the joints strongly influenced the shape and size of the blocks. These geoforms have exceptional scenic value and are situated in a geographically advantageous location for a range of educational and recreational activities that can be adapted to different levels of knowledge. The implementation of such proposals in the context of understanding the physical environment would result in a number of benefits, including (i) greater community involvement in the environment, (ii) valorization of the local landscape as a historical record of the planet's evolution, and (iii) improvement of urban geological risk prevention programs. Finally, these landforms are fascinating and offer conclusive evidence that can be observed on a wide range of scales, illustrating how the brittle deformation and magmatic fabric of the granite massifs influenced the development of the local landscape.

References

  1. Kasting JF. The goldilocks planet? How silicate weathering maintains Earth just right?. Element, 2019; 15: 235-240. DOI: 10.2138/gselements.15.4.235
     Google Scholar
  2. Roerdink DL, Ronen Y, Strauss H, Mason PRD. Emergence of felsic crust and subaerial weathering recorded in palaeoarchaean barite. Nat. Geosci. 2022; 15: 227–232. https://doi.org/10.1038/s41561-022-00902-9
     Google Scholar
  3. Gregory KJ. The Earth’s land surface, landforms and processes in geomorfology. London: SAGE Publications Ltd; 2010.
     Google Scholar
  4. Plasienka D. Plate tectonic and landform evolution. In: Earth System: History and Natural Variability. Cilek V. Ed. London: Eolls Publisher, 2009, pp. 30-71.
     Google Scholar
  5. Gutierrez M. Climatic geomorphology. Spain: Elsevier B.V.; 2005.
     Google Scholar
  6. Bierman PR, Montgomery DR. Key concepts in geomorphology. New York: W. H. Freeman and Company Publishers; 2014.
     Google Scholar
  7. Das S, Kandekar AM, Sangode SJ. Lithologic controls on geomorphic evolution of the central western Ghats: An example from the Aghnashini Catchment, Karnataka, India. J Geol Soc India, 2022; 98: 451–459. https://doi.org/10.1007/s12594-022-2001-6
     Google Scholar
  8. Frumkin A. New developments of karst geomorphology concepts. In: Treatise on Geomorphology, Shroder J, Frumkin A. Eds. San Diego: Academic Press, 2013, pp. 1–13.
     Google Scholar
  9. Jerram D. Introducing volcanology: A guide to hot rocks. London: Dunedin Academic Press Ltd; 2021.
     Google Scholar
  10. Twidale CR. Granite landforms. New York: Elsevier Scientific Publishing Company; 1982.
     Google Scholar
  11. Reusch HH. Note sur la géologie de la Corse. Paris. Soc. Geol. France Bulletin, 1833, 11: 53–67.
     Google Scholar
  12. Pitcher WS. The nature and origin of granite. Hong Kong: Springer Science+Business Media Dordrecht; 1997.
     Google Scholar
  13. Améglio L, Vigneresse JL, Bouchez J. (1997). Granite pluton geometry and emplacement mode inferred from combined fabric and gravity Data. In: Granite: From Segregation of Melt to Emplacement Fabrics, Bouchez J, Hutton DHW, Stephens WE Eds. London: Springer Dordrecht, 1997, pp. 199-214.
     Google Scholar
  14. Román-Berdiel T. Geometry of granite emplacement in the upper crust: contributions of analogue modeling. Geol. Soc. Lon. Special Publications, 1999; 168:77-94. https://doi.org/10.1144/GSL.SP.1999.168.01.06
     Google Scholar
  15. Janasi VA, Vlach SRF, Campo Neto MC, Ulbric HHGJ. Associated A-type subalkaline and high-K calc-alkaline granites in the Itu granite province, southeastern Brazil: petrological and tectonic significance. The Can. Mineral, 2009; 47:1505-1526. DOI: 10.3749/canmin.47.6.1505
     Google Scholar
  16. Anjos PAP, Velázquez VF. Geoforms in granite massifs in the region between Itu-Cabreúva, SP. 30th USP International Symposium of Undergraduate Research, Abstract, Oct. 19-27, São Paulo, 2022.
     Google Scholar
  17. Taylor SR, McLennan SM. The Continental Crust: Its Composition and Evolution. London: Blackwell; 1985.
     Google Scholar
  18. Wedepohl KH. The composition of the continental crust. Geoch. Cosmoch. Acta, 1995; 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
     Google Scholar
  19. Brown M, Rushmer T. Evolution and Differentiation of the Continental Crust. Cambrigde: Cambrigde University Press; 2005.
     Google Scholar
  20. Gill R. Igneous Rocks and Processes: a practical guide. Oxford: John Wiley & Sons Ltd; 2010.
     Google Scholar
  21. Nédélec A, Bouchez JL. Granites Petrology, Structure, Geological Setting, and Metallogeny. Oxford, Oxford University Press; 2015.
     Google Scholar
  22. Elliston JN. (1985). Rapakivi texture: an indication of the crystallization of hydrosilicates, II. Earth-Scie. Rev, 1985; 22:1-92. https://doi.org/10.1016/0012-8252(85)90039-X
     Google Scholar
  23. Dempster TJ, Jenkin GRT, Rogers G. The Origin of Rapakivi Texture. J. Petrol, 1993; 35: 963-981. https://doi.org/10.1093/petrology/35.4.963
     Google Scholar
  24. Carroll D. Rock weathering. London: Plenum Press; 1970.
     Google Scholar
  25. White AF, Brantley SL. Chemical Weathering Rates of Silicate Minerals, vol. 31. Washington: Mineralogical Society of America; 1993.
     Google Scholar
  26. Prothero DR, Schwab F. Sedimentary geology: an introduction to sedimentary rocks and stratigraphy. New York: W. H. Freeman and Company; 2013.
     Google Scholar
  27. Tarbuck EJ, Lutgens FK. Earth: an introduction to physical geology. New York: Pearson Education; 2014.
     Google Scholar
  28. Cronan CS. Mineral Weathering. In: Ecosystem Biogeochemistry. Cronan CS. Switzerland: Springer International Publishing AG, 2018, pp. 87-100. https://doi.org/10.1007/978-3-319-66444-6_7
     Google Scholar
  29. Godard, A, Lagasquie J-J, Lageat Y. Basement regions. Heidelberg: Springer-Verlag; 2001.
     Google Scholar
  30. Twidale CR, Vidal-Romani JR. Landforms and geology of granite terrain. London: A.A. Balkema Publishers Leiden; 2005.
     Google Scholar
  31. Migoń P. Granite landscapes of the world. New York: Oxford University Press Inc; 2006.
     Google Scholar
  32. Wernick E, Galembeck TMB, Godoy AM, Hörmann PK. Geochemical variability of the Rapakivi Itu Province, State of São Paulo, SE Brazil. An. Acad. Bras. Ci, 1991; 69:395–413.
     Google Scholar
  33. Galembeck TMB. Aspectos geológicos, petrográficos e geoquímicos da intrusão Cabreúva, complexo granitóide Itu (SP). M.S. Thesis. Instituto de Geociências e Ciências Exatas; 1991.
     Google Scholar
  34. Galembeck TMB. O complexo múltiplo centrado e plurisserial Itu, SP. Ph.D. Thesis. Instituto de Geociências e Ciências Exatas; 1991.
     Google Scholar
  35. Pereira GS. Petrogênese dos plútons Cabreúva e Indaiatuba, batólito granítico Itu, SP: Idade, áreas-fonte e condições de cristalização. Ph.D. Thesis. Universidade de São Paulo; 2019.
     Google Scholar
  36. Pascholati EM. Caracterização geofísica da suíte intrusiva de Itu. Ph.D. Thesis, Universidade de São Paulo; 1989.
     Google Scholar
  37. Godard A. Pays et Paysages du Granite. Presses. Paris: Universitaires de France; 1977.
     Google Scholar
  38. White WB, Culver DC, Pipan T. Encyclopedia of caves. London: Academic Press; 2019.
     Google Scholar
  39. Guilleson D. Caves: processes, development and management. Oxford: Blackwell Publishers Ltd; 1996.
     Google Scholar
  40. Twidale CR, Bourne JA. Caves in granite rocks: types, terminology and origins. Cader. Lab. Xeolóxico de Laxe, 2005; 33:35-57.
     Google Scholar
  41. Georgios L, Kriaki P. Preliminary report on granite caves in Greece. Cader. Lab. Xeolóxico de Laxe, 2008; 33:101-113.
     Google Scholar
  42. Song Z, Tang W, Liu X, Wang L. Genesis and Geological Significance of Granite Caves in Laoshan of China. Chem. Engin. Transac, 2015; 46:763-768. DOI:10.3303/CET1546128
     Google Scholar
  43. Igual EC. Gruta do Riacho Subterrâneo, Itu-SP (CNC SBE SP 700): a maior caverna em granito do Hemisfério Sul. Bol. Eletr. Teto Baixo, 2011; 2:4-6.
     Google Scholar
  44. Vida-Romani JR. Forms and structural fabric in granite rocks. Cader. Lab. Xeolóxico de Laxe, 2008; 33:175-198.
     Google Scholar
  45. Eppes MC, Keanini R. Mechanical weathering and rock erosion by climate dependent subcritical cracking. Rev. Geophysics, 2017; 55:470-508.
     Google Scholar
  46. Frings PJ, Buss HL. The central role of weathering in the Geosciences. Elements, 2019; 229–234.
     Google Scholar
  47. Colman SM, Dethier DP. Rates of chemical weathering of rocks and minerals. London: Academic Press Inc; 1986.
     Google Scholar
  48. Campbell EM. Granite Landform. J R Soc West Aust, 1997; 80:101-112.
     Google Scholar