##plugins.themes.bootstrap3.article.main##

The aim of this present study is to determine the physicochemical properties of atmospheric particles in commune 5 of the Niamey region. For this purpose, the determination of the atmospheric physical and chemical properties was carried out using a low-volume sampler, a Davis-type weather station, a balance high sensitivity, The Thermo XL2 and the black carbon reflectometer. The pollutants concerned by this study are mainly fine particulate matter (PM2.5), black carbon and heavy metals such as Cr, Cu, Hg, Mn, Ti, V, Zn, Ba, Fe and Sr. According to the result of this study which is carried out over 30 days, the PM2.5 concentrations of air measured were between 0 and 286.54 μg/L with a mean value of 11.65 μg/L. The temperature values were between 24 and 27 °C with an average value of 25.3°C. The humidity value of measured air varies between 8 and 17 % with a mean value of 13.3 %. The measured wind speed values are between 3.24 and 6.48 Km/h with an average value of 4.14 Km/h. According to World Health Organization guidelines the PM2.5, Mn, Hg, Ba, Cr and black carbon concentrations measured during this study exceeded the permissible limit values. Correlation analysis results highlighted a strong correlation between Mn-Fe, Mn-Zn, Mn-Ti, Mn-V, Mn-Cr, Zn-Ti, Zn-V, Zn-Cr, Ti-V, and Ti-Cr indicating that these ions come from a common source. According to principal component analysis for heavy metals, three principal factors that explain 87.34% of the total variance have been formed. Component 1 includes V, Zn, Ti and Cr with a variance value of 56.067 %; the second factor includes Ba and black carbon with a variance value of 19.665 % and the third factor is only represented by Sr with a variance value of 11.612 %. The high value of variance observed in the first group of components indicated that V, Zn, Ti and Cr are the main pollutants that control the air pollution in the study area.

References

  1. Pascal L. Effets à court terme de la pollution atmosphérique sur la mortalité. Revue Française d'Allergologie. 2009; 49(6): 466-476. French.
     Google Scholar
  2. Zmirou D, Schwartz J, Saez M, Zanobetti A, Wojtyniak B, Touloumi G, Katsouyanni K. Time-series analysis of air pollution and cause-specific mortality. Epidemiology. 1998; 495-503.
     Google Scholar
  3. Elichegaray C, Bouallala S, Maitre A, Ba M. État et évolution de la pollution atmosphérique. Revue Française d'Allergologie. 2010; 50(4): 381-393. French.
     Google Scholar
  4. Adoléhoumé A. La problématique des transports urbains et la réduction de la pollution de l’air due aux transports motorisés en Afrique subsaharienne. In Colloque développement durable, leeons et perspectives. Ouagadougou : Solidarité internationale sur les transports et la recherche en Afrique subsaharienne (SITRAS S), 2004: l-7. French.
     Google Scholar
  5. Ogugbuaja VO, Barsisa LZ. Atmospheric pollution in north-east Nigeria: measurement and analysis of suspended particulate matter. Bulletin of the Chemical Society of Ethiopia. 2001; 15(2): 109-118.
     Google Scholar
  6. Kakulu SE. Trace metal concentration in roadside surface soil and tree back: A measurement of local atmospheric pollution in Abuja, Nigeria. Environmental Monitoring and Assessment. 2003; 89(3): 233-242.
     Google Scholar
  7. Sow B, Tchanche B, Fall I, Souaré S, Mbow-Diokhané A. Monitoring of Atmospheric Pollutant Concentrations in the City of Dakar, Senegal. 2021.
     Google Scholar
  8. Chang Y, Du T, Song X, Wang W, Tian P, Guan X, et al. Changes in physical and chemical properties of urban atmospheric aerosols and ozone during the COVID-19 lockdown in a semi-arid region. Atmospheric Environment. 2022; 287: 119270.
     Google Scholar
  9. Zoma V. Transport routier et pollution de l'air dans la ville de Ouagadougou. Revue Ivoirienne de Sociologie et de Sciences Sociales (RISS). 2022 ; 1(9) : 37-51. French
     Google Scholar
  10. Paul-Didi, MK, Claudine DE, Welcome MN, Salvatore NN, Léon ZM, Emery KM. Contribution à l’étude de la pollution particulaire de l’air en milieu urbain: «Cas des PM2, 5 et PM10 le long de la route Kasapa, dans la Ville de Lubumbashi, en RD Congo». French.
     Google Scholar
  11. World Health Organization. WH global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. 2021.
     Google Scholar
  12. Ozer P. Estimation de la pollution particulaire naturelle de l’air en 2003 à Niamey (Niger) à partir de données de visibilité horizontale. Environnement Risques et Santé. 2003; 4(1). French.
     Google Scholar
  13. Zakari MM, Nguema FP, Adamou A, Esly E, Zakari A. Air Pollution linked to Road Traffic: Assessment of Carbon Monoxide (CO) Emissions in Zinder City, Niger Republic. Journal of Science and Technology. 2020; 9(10): 111-120.
     Google Scholar
  14. Issaka H, Badariotti D. Les inondations à Niamey, enjeux autour d’un phénomène complexe. Les Cahiers d’Outre-Mer. Revue de géographie de Bordeaux. 2013; 66(263): 295-310.) French.
     Google Scholar
  15. M Mamane ICO, Mahaman SI, Hassan MA, Manzola AS, Bachir MDD, Amadou H. Comparative Study of Physicochemical and Bacteriological Parameters of Water Packaged in Sachets and Tap Water in Niamey City. Ijsrm.Human, 2022; 21 (2): 93-108
     Google Scholar
  16. Le Barbé L, Lebel T. Rainfall climatology of the HAPEX-Sahel region during the years 1950-1990. Journal of hydrology. 1997; 188: 43-73.
     Google Scholar
  17. Hamdan NM, Alawadhi H, Shameer M. Physicochemical Characterization and Seasonal Variations of PM10 Aerosols in a Harsh Environment. Frontiers in Environmental Science. 2021; 9, 666678.
     Google Scholar
  18. Hristova E, Veleva B, Georgieva E, Branzov H. Application of positive matrix factorization receptor model for source identification of PM10 in the city of Sofia, Bulgaria. Atmosphere. 2020; 11(9): 890.
     Google Scholar
  19. Jenkins G. A comparison between two types of widely used weather stations. Weather. 2014; 69(4): 105-110.
     Google Scholar
  20. Eching SO, Snyder RL. Statistical control charts for quality control of weather data for reference evapotranspiration estimation. In IV International Symposium on Irrigation of Horticultural Crops. 2003; 664: 189-196.
     Google Scholar
  21. Munandar A, Fakhrurroja H, Rizqyawan MI, Pratama RP, Wibowo JW, Anto IAF. (2017, October). Design of real-time weather monitoring system based on mobile application using automatic weather station. In 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT). 2017; 44-47). IEEE.
     Google Scholar
  22. Zeiny A, Jin H, Lin G, Song P, Wen D. (2018). Solar evaporation via nanofluids: A comparative study. Renewable Energy. 2018; 122: 443-454.
     Google Scholar
  23. Valskysa V, Ignatavičiusa G, VALENTUKEVIČIENĖB M. The Analysis of Sediments Contamination with Heavy Metals after Hydro-mechanical Treatment in the Southern Part of Lake Babrukas. In The 9th International Conference “Environmental Engineering. 2014.
     Google Scholar
  24. Stylianou M, Tsiftes K, Gavriel I, Kostarelos K, Demetriou C, Papaioannou A. Environmental impacts of abandoned sulphide mines-the example of mathiatis mine in cyprus. In Proceedings of the SYMBIOSIS International Conference, Athens, Greece. 2014; 19-21.
     Google Scholar
  25. Santoso M, Dwiana Lestiani D, Hopke PK. (2013). Atmospheric black carbon in PM2. 5 in Indonesian cities. Journal of the Air & Waste Management Association. 2013; 63(9):1022-1025.
     Google Scholar
  26. Harbola S, Koch S, Ertl T, Coors V. Air Quality Temporal Analyser: Interactive temporal analyses with visual predictive assessments. 2021.
     Google Scholar
  27. Kumar M, Ramanathan AL, Rao MS, Kumar B. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental geology. 2006; 50(7): 1025-1039. https://doi.org/10.1007/s00254-006-0275-4.
     Google Scholar
  28. Hassan AM, Firat Ersoy A. Statistical assessment of seasonal variation of groundwater quality in Çarşamba coastal plain, Samsun (Turkey). Environmental Monitoring and Assessment. 2022; 194(2): 1-29.
     Google Scholar
  29. Kellekçi ÖL, Berköz L. Konut ve çevresel kalite memnuniyetini yükselten faktörler. İTÜ dergisi/a. 2010; 5(2): 167-178.
     Google Scholar
  30. Boateng TK, Opoku F, Acquaah SO, Akoto O. Pollution evaluation, sources and risk assessment of heavy metals in hand-dug wells from Ejisu-Juaben Municipality, Ghana. Environmental systems research. 2015; 4(1): 1-12. https://doi.org/10.1186/s40068-015-0045-y.
     Google Scholar
  31. Ward Jr JH. Hierarchical grouping to optimize an objective function. Journal of the American statistical association. 1963; 58(301): 236-244.
     Google Scholar
  32. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2. 5 and potential mechanisms. Ecotoxicology and environmental safety. 2016: 128, 67-74.
     Google Scholar
  33. World Health Organization. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. 2011.
     Google Scholar
  34. Maji KJ, Ye WF, Arora M, Nagendra SS. PM2. 5-related health and economic loss assessment for 338 Chinese cities. Environment international. 2018; 121: 392-403.
     Google Scholar
  35. Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BÉÓ, Ngwenya BT. (2010). Manganese concentrations in Scottish groundwater. Science of the total environment. 2010; 408(12): 2467-2473.
     Google Scholar
  36. Hassan AM, Ersoy AF, Turan NA. Assessment of heavy metal (loid) s in groundwater by multivariate statistical analysis and metals pollution indices: a case study of Çarşamba coastal aquifer, North Turkey. Arabian Journal of Geosciences. 2021; 14(23): 1-21.
     Google Scholar
  37. Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, Doty RL. Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occupational and environmental medicine. 2007; 64(3): 167-177.
     Google Scholar
  38. Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, Chen H. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environmental Science & Technology. 2021; 55(6): 3807-3818.
     Google Scholar
  39. Höllriegl V, München HZ. Strontium in the environment and possible human health effects. Encyclopedia of Environmental Health. 2011; 5: 268-275.
     Google Scholar
  40. Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A. A review of the health impacts of barium from natural and anthropogenic exposure. Environmental geochemistry and health. 2014; 36(4): 797-814.
     Google Scholar
  41. Kim KH, Kabir E, Jahan SA. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of hazardous materials. 2016; 306: 376-385.
     Google Scholar
  42. Hossain MB, Ahmed ASS, Sarker M, Islam S. Human health risks of Hg, As, Mn, and Cr through consumption of fish, Ticto barb (Puntius ticto) from a tropical river, Bangladesh. Environmental Science and Pollution Research. 2018; 25(31): 31727-31736.
     Google Scholar
  43. Costa M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Critical reviews in toxicology. 1997; 27(5): 431-442.
     Google Scholar
  44. Highwood EJ, Kinnersley RP. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment international. 2006; 32(4): 560-566.
     Google Scholar
  45. Lu X, Wang L, Li LY, Lei K, Huang L, Kang D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of hazardous materials. 2010; 173(1-3): 744-749.
     Google Scholar
  46. Zhao CX, Wang YQ, Wang YJ, Zhang HL, Zhao BQ. Temporal and spatial distribution of PM2. 5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing. Huan jing ke xue= Huanjing kexue. 2014; 35(2): 418-427.
     Google Scholar
  47. Dai QL, Bi XH, Wu JH, Zhang YF, Wang J, Xu H, Feng YC. Characterization and source identification of heavy metals in ambient PM10 and PM2. 5 in an integrated iron and steel industry zone compared with a background site. Aerosol and Air Quality Research. 2015; 15(3): 875-887.
     Google Scholar
  48. Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med. 2006 May 11;354(19):1985–1997.
     Google Scholar