Contribution of Remote Sensing and GIS to the Inventory and Analysis of Factors influencing on the Development of Karst Features in the Middle Atlas, Morocco

##plugins.themes.bootstrap3.article.main##

  •   Barbara Theilen-Willige

  •   Iliass Naouadir

Abstract

The development of karst features is a complex and interactive process of many factors with varying influence over time. The following main factors seem to have influenced the occurrence and development of karst features in the Middle Atlas in Morocco: Precipitations after extreme weather events depending on the precipitation pattern modified by orographic effects and exposition of the terrain towards the main rain-bearing clouds are determining surface water input and infiltration as well as the outline of morphologic watersheds and drainage basins. The lithologic conditions such as the outcrops of lower Jurassic limestones, the geomorphologic disposition, the volcanic activity within limestones combined with hydrothermal dissolution processes, and the structural conditions influencing water permeability in fault and fracture zones and, thus, the dissolution intensity, are further factors. Ongoing aseismic vertical and horizontal neotectonic movements due to plate tectonic activities and shallow earthquake activities are causing the development and reactivation of fault zones and as consequence modifying groundwater flow conditions in the karst hydrologic systems. Seismic activity can lead as well to the development of sinkholes and the collapse of caves. The development of a systematic Karst-Geo Information System (GIS) is recommended that should be updated regularly.


Keywords: Karst, Middle Atlas, Remote Sensing, GIS.

References

Baadi K, Lebreton B, Sabaoui A, François Atrops F. The Karst of the Northern Middle Atlas (Morocco): An Invaluable Heritage to Inventory. Geoheritage. 2021; 13:37. Available from: https://doi.org/10.1007/s12371-021-00559-7.

De Waele J, Di Gregorio F, Melis MT, El Wartiti M. Landscape units, Geomorphosites and Geodiversity of the Ifrane-Azrou region (Middle Atlas, Morocco). Mem. Descr. Carta Geol. D’It. LXXXVII; 2009: 63-76.

De Waele J, Melis MT. Geomorphology and geomorphological heritage of the Ifrane–Azrou region (Middle Atlas, Morocco). Environ Geol (2009) 58:587–599, doi: 10.1007/s00254-008-1533-4.

Serpelloni E, G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei,P. Baldi and P. Gasperini. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int. 2007; 169: 1180–1200. Doi: 10.1111/j.1365-246X.2007.03367.x.{7-11.

Hamdani N, Baali A. Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: a Case Study of the Moroccan Central Middle Atlas. Remote Sensing in Earth Systems Sciences.2019. Available from: https://doi.org/10.1007/s41976-019-0011-y.

Mounir S, Saoud N, Charroud M, Mounir K, Choukrad J. The Middle Atlas Geological karsts forms: Towards Geosites characterization. Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles, 2019; 74(17): 1-9. Ogst.ifpenergiesnouvelles.fr. Available from: https://doi.org/10.2516/ogst/2018089.

European-Mediterranean Seismological Centre (EMSC) Available from: https://www.emsc-csem.org/Earthquake/?filter=yes.

International Seismologica] Centre (ISC), Available: http://www.isc.ac.uk/iscbulletin/search/catalogue/interactive/.

US Geological Survey (USGS). Available from: https://earthquake.usgs.gov/earthquakes/search/.

USGS EarthExplorer. Available: https://earthexplorer.usgs.gov/.

European Space Agency (ESA), Copernicus Open Access Hub. Available from: https://scihub.copernicus.eu/dhus/#/home.

Geofabrik’s free download server. Available from: http://download.geofabrik.de/africa.html.

Theilen-Willige B, Malek H A, Charif, A, El Bchari, F, Chaïbi, M. Remote Sensing and GIS Contribution to the Investigation of Karst Landscapes in NW-Morocco. Geosciences. 2014; 4:50-72. Doi:10.3390/geosciences4020050. Available from http://www.mdpi.com/2076-3263/4/2/50.

WorldClim – Global climate and weather data. Available from: https://www.worldclim.org/data/index.html.

Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, Guillocheau F, Michard A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics. 2009; 475: 9–28.

Gasquet D., Levresse G., Cheilletz A., Azizi-Samir M.R., Mouttaqi A. Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition, Precambr. Res. 2005; 140: 157–182.

Martin J. Le Moyen Atlas Central, e´tude ge´omorphologique. Notes Mem. Serv. Geol. Maroc.1981; 258, 445.

Benvenuti M, Cavallina C, Moratti G, Papini M. Stratigraphic and tectonic architecture of the Middle Jurassic-Upper Cretaceous at the southern front of the Central High Atlas (Morocco): a cartographic revision, Journal of Maps. 2022. Available from: https://doi.org/10.1080/17445647.2022.2101950.

Muzirafuti A, Boualoul M, Barreca G, Allaoui A, Bouikbane H, Lanza S, Crupi A, Randazzo G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources. 2020; 9 (4): 51 https://doi.org/10.3390/resources9040051.

Muzirafuti A, Boualoul M, Randazzo G, Lanza S, Allaoui A, El Ouardi H, Habibi H, Ouhaddach H. The Use of Remote Sensing for Water Protection in the Karst Environment of the Tabular Middle Atlas / The Causse of El Hajeb /Morocco. In: Earth observation advancements in a changing world, Edition: Trends in earth observation. 2019; 31:131-134. Publisher: Associazione italiana di telerilevamento.

Mhiyaoui H, Ahmed Manar A, Remmal T, Boujamaoui M, El Kamel F, Amar M, Mansour M, El Amrani El Hassani I. Structures profondes du volcanisme quaternaire du Moyen Atlas central (Maroc): Apports de la cartographie aéromagnétique - Deep quaternary volcanic structures in the central Middle Atlas (Morocco): Contributions of aeromagnetic mapping. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre. 2016; 38: 111-125. E-ISSN : 2458-7184.

Shanov S, Kostov K. Dynamic tectonics and karst, cave and karst systems of the world. 2015, Springer-Verlag, Berlin Heidelberg. Available from: https://doi.org/10.1007/978-3662-43992-0.

Naouadir I. Pocket Card Morocco – Caves in Morocco. International Year 2021 of Caves and Karst. Poster · November 2021. Available from: https://www.researchgate.net/publication/356460486.

Akdim B, Amyay M. Environmental Vulnerability and Agriculture in the Karstic Domain: Landscape Indicators and Cases in the Atlas Highland, Morocco. In. J. Speleol. 1999; 28 B (1/4): 119–138.

Hyland SE, Kennedy LM, Younos T, Parson S. Analysis of Sinkhole Susceptibility and Karst Distribution in the Northern Shenandiah Valley, Virginia: Implications for low Impact Development (LID) Site Suitability Models. Virginia Polytechnic Institute and State University Blacksburg, Virginia, Virginia Water Resources Research Center. Special Report, SR31-2006, 2006. Doi.10.1080/17445647.2022.2101950. Available from: https://doi.org/10.1080/17445647.2022.2101950.

NASA EOSDIS Worldview. Available from: https://worldview.earthdata.nasa.gov.

World-Weather.info. Available from: https://world-weather.info/archive/morocco/meknes/#t2.

Pardo-Igúzquiza E, Valsero JJD, Dowd PA. Automatic Detection and Delineation of Karst Terrain Depressions and Its Application in Geomorphological Mapping and Morphometric Analysis. ACTA CARSOLOGICA. 2013; 42(1): 17–24, POSTOJNA. Available from: https://ojs.zrc-sazu.si/carsologica/article/view/.

De Carvalho Júnior, OA, Guimarães RF, Montgomery DR, Gillespie AR, Gomes RAT, de Souza Martins E, Correia Silva N, Karst Depression Detection Using ASTER, ALOS/PRISM and SRTM-Derived Digital Elevation Models in the Bambuí Group, Brazil. Remote Sens. 2014; 6:330–351.

NASA Precipitation & Applications Viewer. Available from: https://gpm.nasa.gov/data/visualizations/precip-apps

Amine A, El Amrani El Hassani I, Remmal T, El Kamel F, Van wyk de vries B, Boivin P. Geomorphological Classification and Landforms Inventory of the Middle Atlas Volcanic Province (Morocco): Scientific Value and Educational Potential. Quaestiones Geographicae 2019; 38(1). Doi: 10.2478/quageo-2019-0010.

Menjour F, Remmal T, Hakdaoui M, El Kamel F, Lakroud K, Amraoui F, El Amrani El Hassani I, Van wyk de vries B, Boivin P. Role of Fracturing in the Organization of the Karst Features of Azrou Plateau (Middle Atlas, Morroco) Studied by Remote Sensing Imagery. J Indian Soc Remote Sens. December 2017;45(6):1015–1030. Doi: 10.1007/s12524-016-0646-6.

Melis MT, Pisani L, De Waele J. On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco). Remote Sens. 2021; 13: 4087. Available from: https://doi.org/10.3390/rs13204087.

Miche H, Saracco G, Mayer A, Qarqori K, Rouai M, Dekayir A, Chalikakis K, Emblanch C. Geochemical and Isotopical Analyzes of Groundwater in a Karst System: The case study of Fez-Meknes Basin (Morocco). Poster, 43rd IAH Congress; 25-29 th. September 2016.

Atid C, Benmakhlouf M, Said Chakiri S. Hot Springs and Geothermal Energy in North of Morocco. International Journal of Civil Engineering and Technology. 2019; 10(9): 325-333. Available from: http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=9.

El Ouardi H, Boualoul M, Ouhadadach H, Habibi M, Muzarafuti A, Allaoui A, Amine A. Fault analysis ans its relationships with karst structures affecting Lower Jurassic limestones in the Agourai plateau (Middle Artlas, Morocco). SGE, GEOGACETA, 62, 2018. Available from: https://www.researchgate.net/publication/334684608_Fault_analysis_and_its_relationship_with_karst_structures_affecting_Lower_Jurassiclimestones_in_the_Agourai_plateau_Middle_Atlas_Morocco.

Saroli M, Albano M, Moro M, Falcucci E, Gori S, Galadini F, Petitta M. Looking into the Entanglement between Karst Landforms and Fault Activity in Carbonate Ridges: The Fibreno Fault System (Central Italy). Front. Earth Sci. 2022;10:891319. Doi: 10.3389/feart.2022.891319.

Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, El Azzouzi M, Maury RC, Charriere A, Taki Z, Benammi M, Michard A. The Atlas System. In: Michard A., Saddiqi O., Chalouan A., Frizon de Lamotte D. (eds.). Continental Evolution: The Geology of Morocco. Structure, Stratigraphy and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction, Lecture Notes in Earth Sciences. 2008; 116: 133–202, Springer-Verlag, Berlin, Heidelberg.

Bragato PL. Systematic Triggering of Large Earthquakes by Karst Water Recharge: Statistical Evidence in Northeastern Italy. Frontiers in Earth Sci. Sec. Geohazards and Georisks. 26 July 2021. Available from: https://doi.org/10.3389/feart.2021.664932.

Mulargia, F, Bizzarri A. Anthropogenic Triggering of Large Earthquakes. Sci. Rep. 2014; 4, 6100. Doi:10.1038/srep06100.

Hainzl S, Kraft T, Wassermann J, Igel H, Schmedes E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006; 33, L19303. Doi:10.1029/2006GL027642.

Chaimae Atid, Benmakhlouf M, Chakiri S. Hot Springs and Geothermal Energy in North of Morocco. International Journal of Civil Engineering and Technology (IJCIET). September 2019; 10 (09):325-333. Article ID: IJCIET_10_09_034. Available from: http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=9.

Geologic Shapefiles. Available from: http://www.mediafire.com/file/7vhwkevolkm94bl/g%C3%A9ologie+maroc.zip.

ONE Geology, MAR BGS 1:5M Geology. Available from: http://portal.onegeology.org/OnegeologyGlobal/, British Geological Survey, Available from: https://map.bgs.ac.uk/arcgis/services/AGA/BGS_Groundwater/MapServer/WmsServer?

##plugins.themes.bootstrap3.article.details##

How to Cite
Theilen-Willige, B., & Naouadir, I. (2022). Contribution of Remote Sensing and GIS to the Inventory and Analysis of Factors influencing on the Development of Karst Features in the Middle Atlas, Morocco. European Journal of Environment and Earth Sciences, 3(6), 1–17. https://doi.org/10.24018/ejgeo.2022.3.6.330