##plugins.themes.bootstrap3.article.main##

In the northern peripheral zone of the Urban Commune of Antananarivo (Madagascar), rice fields are irrigated by wastewater in its raw state or after treatment, of a mixed and biodegradable nature, which contains nitrates N-NO3- , Cl-, H2 PO4- , and metallic trace elements with excessive concentrations of heavy metals (Pb, Cr, Cu, Zn and Mn) that can be introduced into the environment, for example, by industrial effluents and waste. The direct effects of the use of these waters in irrigation are soil acidification, enrichment in fertilising elements (NPK) mainly from domestic waste and fertilisers used by farmers and in organic matter, and then the accumulation of trace metal elements in the soil from the plant, during the years of monitoring. However, according to the field studies, we found the following: on the one hand, chromium inputs (dry season 0.45mg/L and rainy season 0.71mg/L), conductivity (dry season 2236µS/cm and rainy season 268.6µS/cm), turbidity (dry season 42.9NTU and rainy season 78.59NTU), variable in quantity and quality during these two seasons, with high and out of range levels observed in the irrigation water. These levels can only be explained by intense emissions from the various discharges into the untreated watercourses located in the study area. This shows the direct impact of chemical pollution discharged into the rice fields on the physico-chemical and metallic quality of the water and then the soil. Then, conversely, the soil of the rice fields (SRi) of our study site shows an efficient purifying power, but according to the respective seasons according to the measurement of the water at the entrance and exit of these rice fields, where during the dry season 2015, the increasing purifying order for the elimination of the different parameters is as follows: COD (24.85%) BOD5 (25.84%) EC (27.98%) NO3- (38.333%) Turbidity (44.11%) Cr (45.31%) TSS (66.44%); and during the wet season 2016, this order is: BOD5 (6.47%) COD (8.54%) EC (19.02%) NO3- (38.02%) Turbidity (40.57%) TSS (58.13%) Cr (73.53%). However, some forms of these parameters are poorly retained by the soil and are easily leached to the groundwater. Thus, it can be seen that the efficiency of soil purification depends on the element in question and the volume of irrigation.

References

  1. Khouri N, Kalbermatten JM, Bartone CR. Reuse of wastewater in agriculture: A Guide for Planners. Washington DC, USA: The International Bank for Reconstruction and Development/The Word Bank; 1994.
     Google Scholar
  2. OMS. L'utilisation des eaux usées en agriculture et en aquiculture: recommandations à visées sanitaire, 1989.
     Google Scholar
  3. Franckreich. Mémento de l’agronome. 4th ed. Paris: Ministère de la Coopération et du Développement; 1991, ch 5, pp 150-167.
     Google Scholar
  4. Amy G, Drewes J. Soil Aquifer Treatment (SAT) as a Natural and Sustainable Wastewater Reclamation/Reuse Technology: Fate of Wastewater Effluent Organic Matter (EfOM) and Trace Organic Compounds. Environmental Monitoring and Assessment 2006;129(1-3):19–26. doi: 10.1007/s10661-006-9421-4.
     Google Scholar
  5. Bouwer H. Role of groundwater recharge intreatment and storage of wastewater for reuse. Wat. Sci. Tech. 1991;9(24):295-302. doi: 10.2166/wst.1991.0258.
     Google Scholar
  6. Bechac JP, Boutin P, Merlier B, Nuer P. Traitement des eaux usées. (3rd Ed.). 1987.
     Google Scholar
  7. Bize J, Minault N. Epuration des eaux usées par le sol. Journées Techniques, Assainissement Urbain au Maroc, Agadir; 6-8 September,1989, p. 16.
     Google Scholar
  8. Décret n°2003-464. Classification des eaux de surfaces et réglementation des rejets d’effluents liquides malagasy. [Internet] 2023. Retrieved from: http://faolex.fao.org/docs/pdf/mad92369.pdf.
     Google Scholar
  9. Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-A case study. Agriculture, Ecosystems and Environment, 2005;109.
     Google Scholar
  10. Solis C, Andrade E, Mireles A, Reyes-Solis IE, Garcia-Calderon N, Lagunas-Solar MC, Pina CU, Flocchimi RG. Distribution of heavy metals in plants cultivated with wastewater irrigate soils during different periods of time. Nuclear Instruments and Methods in Physics Research, 2005; B241.
     Google Scholar
  11. Abba ST, Sarfraz M, Mehdi SM, Hassan G, Ur-Rehman O. Trace elements accumulation in soil and rice plants irrigated with the contaminated water. Soil and Tillage Research, 2007;94.
     Google Scholar
  12. Mottier V, Brissaud F, Nieto P, Alamy Z. Wastewater treatment by infiltration percolation: A case study. Wat. Sci. Tech. 2000;41(1):77-84. doi: 10.2166/wst.2000.0014.
     Google Scholar
  13. Valiron F. La réutilisation des eaux usées. Lavoisier; 1983: p.207.
     Google Scholar
  14. US EPA, Guidance manual for compliance with the interim enhanced surface water treatment rule: turbidity provisions. United States Environmental Protection Agency (EPA 815-R-99-010), 1999, pagination multiple.
     Google Scholar
  15. Santé Canada, Recommandations pour la qualité de l’eau potable au Canada, document technique, La turbidité, Bureau de la qualité de l’eau et de l’air, Direction générale de la santé environnementale et de la sécurité des consommateurs, Santé Canada, Ottawa (Ontario), 2012, (Numéro de catalogue H144-9/2013F-PDF).
     Google Scholar
  16. ANSES. Réutilisation des eaux usées traitées pour l’irrigation des cultures, l’arrosage des espaces verts par aspersion et le lavage des voiries, 2012.
     Google Scholar
  17. Phalempin M, Vanclooster M, Gerin PA. ‘Mission de guidance sur le traitement approprié et la capacité épuratoire des sols’, Convention d’étude entre le Earth & Life Institute de l’Université catholique de Louvain et la Direction générale opérationnelle. Agriculture, Ressources Naturelles et Environnement, 2018 ; 226.
     Google Scholar
  18. Brissaud F. Réutilisation des eaux usées pour l'irrigation : méthodologie, réalisation en France, Séminaire International "réutilisation des eaux usées", Les 18-22 septembre, Sophia Antipolis, France, 1989.
     Google Scholar
  19. Ayers RS, Weston DW. La qualité de l'eau en agriculture, Bulletin F.A. O. d'irrigation et de drainage, 1988;(29).
     Google Scholar
  20. FAO. L'irrigation avec des eaux usées traitées : Manuel d'utilisation; 2003.
     Google Scholar
  21. Lylia R, Ramzi H, Hichem K, Djemoi M, Menouar S. Groundwater Quality in Two Semi-Arid Areas of Algeria: Impact of Water Pollution on Biodiversity, Journal of Bioresource Management, 2020;7(3):16-34. doi: 10.35691/JBM.0202.0137.
     Google Scholar
  22. Choukr-Allah R, Hamdy A. Wastewater treatment and reuse as a potential water resource for irrigation. In The use of non conventional water resources, (Hamdy A. Ed.) Bari: CIHEAM / EU DG Research, pp. 101-124, 2005. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n.66).
     Google Scholar
  23. Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut., 2000;107:263-283. doi: 10.1016/S0269-7491(99)00168-2.
     Google Scholar
  24. Lai H, McNeill L. Chromium redox chemistry in drinking water systems. J. Environ. Eng. 2006;132(8):841-852. doi: 10.1061/(ASCE)0733-9372(2006)132:8(842).
     Google Scholar
  25. Gardea-Torresdey J, Tiemann K, Armendariz V, Bess-Oberto L, Chianelli R, Rios J, Parsons J, Gamez G. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass. Journal of Hazardous Materials, 2000;80(1–3):175–188. doi: 10.1016/S0304-3894(00)00301-0.
     Google Scholar
  26. Karthikeyan T., Rajgopal S, Miranda LR. Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, 2005;124(1-3):192-199. doi: 10.1016/j.jhazmat.2005.05.003.
     Google Scholar


Most read articles by the same author(s)