Ionization Waves, Propagating in Opposite Directions, as in Red Sprites
Article Main Content
The paper is devoted to the study of a pulsed streamer discharge, similar to that in the Earth’s upper atmosphere. An experimental setup providing the formation of two ionization waves propagating in opposite directions from a region filled with a plasma formed by the capacitive discharge in low-pressure atmospheric air was created. In a physical experiment, the process of propagation of red ionization waves (streamers) was simulated. It was established that the average propagation velocities of their fronts correspond to those of red sprites. This was shown as a result of spectral studies that at air pressures of 0.4-3 Torr, the radiation color radiation observed visually and captured on an integral photograph from the region of passage of ionization waves is determined by the spectral transitions of the first positive system (FPS) of nitrogen molecules, similar to what occurs for red sprites. In this case, the spectral energy density of radiation in the most intense band of the second positive system (SPS) of the nitrogen molecule with a wavelength of 337.13 nm is an order of magnitude or higher than that in the most intense band of the FPS with the wavelength of 775.32 nm. Using the emission spectra and methods of optical emission spectroscopy (OES), the main parameters of the discharge plasma are estimated. Thus, the created setup makes it possible to simulate the process of the formation of red sprites propagating in opposite directions under laboratory conditions.
References
-
Rodger CJ. Red Sprites, Upward lightning, and VLF perturbations. Rev. Geophys. 1999 Aug 01; 37(3):317–336. doi:10.1029/1999RG900006.
Google Scholar
1
-
Williams ER. Sprites, elves, and glow discharge tubes. Phys. Today. 2001 Nov; 54(11):41–47. doi:10.1063/1.1428435.
Google Scholar
2
-
Füllekrug M, Mareev EA, and Rycroft MJ (editors). Sprites, Elves and Intense Lightning Discharges. Dordrecht: Springer; 2006.
Google Scholar
3
-
Pasko VP. Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci. Technol. 2007 Jan 31; 16(1):S13. doi:10.1088/0963-0252/16/1/S02.
Google Scholar
4
-
Kanmae T, Stenbaek-Nielsen HC, McHarg MG. Altitude resolved sprite spectra with 3 ms temporal resolution. Geophys. Res. Lett. 2007 Apr 13; 34(7):L07810. doi10.1029/2006GL028608.
Google Scholar
5
-
Stenbaek-Nielsen HC, McHarg MG. High time-resolution sprite imaging: observations and implications. J. Phys. D: Appl. Phys. 2008 Nov 20; 41(23):234009. doi:10.1088/0022-3727/41/23/234009
Google Scholar
6
-
Raizer YP, Milikh GM, Shneider MN. Streamer- and leader-like processes in the upper atmosphere: models of red sprites and blue jets. JGR: Space Physics. 2010 Jul 07; 115(A7):A00E42. doi:10.1029/2009JA014645.
Google Scholar
7
-
Kanmae T, Stenbaek-Nielsen HC, McHarg MG, Haaland RK. Diameter-speed relation of sprite streamers. J. Phys. D: Appl. Phys. 2012 Jun 22;45(27):275203. doi:10.1088/0022-3727/45/27/275203.
Google Scholar
8
-
Gordillo-Va´zquez FJ, Luque A, Simek M. Near infrared and ultraviolet spectra of TLEs. JGR: Space Physics. 2012 May 26; 117(A5):A05329. doi10.1029/2012JA017516.
Google Scholar
9
-
Qin J, Celestin S, Pasko VP. Formation of single and double-headed streamers in sprite-halo events. Geophys. Res. Lett. 2012 Mar 15; 39(5):L05810. doi:10.1029/2012GL051088.
Google Scholar
10
-
Neubert T, Østgaard N, Reglero V, Blanc E, Chanrion O, Oxborrow CA, et al. The ASIM mission on the International Space Station. Space Sci. Rev. 2019 Mar 12; 215(26):1–17. doi:10.1007/s11214-019-0592-z.
Google Scholar
11
-
Wang Y, Lu G, Ma M, Zhang H, Fan Y, Liu G, et al. Triangulation of red sprites observed above a mesoscale convective system in North China. Earth and Planetary Physics. 2019 Mar 25; 3(2):111–125. doi:10.26464/epp2019015.
Google Scholar
12
-
Jiang F, Huang C, Wang Y. Emission spectrum of sprites caused by the quasi-electrostatic field above thunderstorm clouds. Meteorology and Atmospheric Physics. 2019 Jan 24; 131(3):421–430. doi:10.1007/s00703-018-0579-4.
Google Scholar
13
-
Kuo CL, Williams E, Adachi T, Ihaddadene K, Celestin S, Takahashi Y, et al. Experimental validation of N2 emission ratios in altitude profiles of observed sprites. Frontiers in Earth Science. 2021 Nov 16; 9:1102–1114. doi:10.3389/feart.2021.687989.
Google Scholar
14
-
Facebook.com. [Internet]. 2021 [cited 2021 January 01]. Available from: http://www.facebook.com/frankie.lucena.1.
Google Scholar
15
-
Wilson CTR. The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. London. 1924 Jan; 37(1):32D. doi:10.1088/1478-7814/37/1/314.
Google Scholar
16
-
Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ. Preliminary Results from the Sprites94 Aircraft Campaign: 1. Red Sprites. Geophys. Res. Lett. (1995) 22(10): 1205–08. doi:10.1029/95GL00583
Google Scholar
17
-
Raizer YP, Allen JE. Gas discharge physics. Berlin: Springer; 1991.
Google Scholar
18
-
Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. JGR: Space Physics. 2010 Jul 10; 115(A7):A00E43. doi:10.1029/2009JA014867.
Google Scholar
19
-
Vasilyak LM, Kostyuchenko SV, Kudryavtsev NN, Filyugin IV. Fast ionisation waves under electrical breakdown conditions. Phys. Usp. 1994 Mar; 37(3):247–268. doi:10.1070/PU1994v037n03ABEH000011.
Google Scholar
20
-
Williams E, Valente M, Gerken E, Golka R. Sprites, calibrated radiance measurements with an air-filled glow discharge tube: application to sprites in mesosphere. In: Sprites, Elves and Intense Lightning Discharges. Füllekrug M, Mareev EA, and Rycroft MJ EDS. Dordrecht: Springer, 2006. pp. 237–251.
Google Scholar
21
-
Anikin NB, Zavialova NA, Starikovskaia SM, Starikovskii AY. Nanosecond-discharge development in long tubes. IEEE Trans. Plasma Sci. 2008 Jan 29; 36:902–903. doi:10.1109/TPS.2008.924504.
Google Scholar
22
-
Sosnin EA, Babaeva NYu, Kozyrev AV, Kozhevnikov VYu, Naidis GV, Skakun VS, Panarin VA, Tarasenko VF. Modeling of transient luminous events in earth's middle stmosphere with apokamp discharge. Phys. Usp. 2021 Feb; 64:191–210. doi:10.3367/UFNe.2020.03.038735.
Google Scholar
23
-
Nassar H, Pellerin S, Musiol K, Martinie O, Pellerin N, Cormier J-M. N2+/N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra. J. Phys. D: Appl. Phys. 2004 Jun 30; 37(14):1904–1916. doi:10.1088/0022-3727/37/14/005.
Google Scholar
24
-
Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG. Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 rf discharge. J. Phys. D: Appl. Phys. 2007 Feb 02; 40(4):1022–1029. doi:10.1088/0022-3727/40/4/016.
Google Scholar
25
-
Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov KV, Wagner H-E. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas. J. Phys. D: Appl. Phys. 2005 Oct 2005; 38(21):3894–3899. doi:10.1088/0022-3727/38/21/010.
Google Scholar
26
-
Ochkin VN. Spectroscopy of low temperature plasma. Weinheim: Wiley VCH Verlag GmbH & Co.; 2009.
Google Scholar
27
-
Philips DM. Determination of gas temperature from unresolved bands in the spectrum from a nitrogen discharge. J. Phys. D: Appl. Phys. 1975 Mar; 9(3):507–521. doi:10.1088/0022-3727/9/3/017.
Google Scholar
28
-
Laux CO. Radiation and Nonequilibrium Collisional-Radiative Models. In: Physico-Chemical of High Enthalpy and Plasma Flows. von Karman Institute Lecture Series 2002-2007. Fletcher D, Carbonnier J-M, Sarma GSR, Magin T. Eds. Belgium: Rhode Saint Genèse, 2002.
Google Scholar
29
-
Hervig M, Thompson RE, McHugh M, Gordley LL, Russell III JM, Summers ME. First confirmation that water ice is the primary component of polar mesospheric clouds. Geophys. Res. Lett. 2001 Mar 15; 28(6):971–974. doi:10.1029/2000GL012104.
Google Scholar
30
-
Bazelyan EM, Raizer YP. Lightning physics and lightning protection. Boca Raton: CRC Press; 2000.
Google Scholar
31
-
Janalizadeh R, Pasko VP. Sprite streamer initiation from species deposited in the trail of overdense meteors under the application of lightning-induced electric field and emissions (Abstarct #AE21A-08, AGU Fall Meeting); 2018 Dec 14–18, Washington D.C., USA.
Google Scholar
32
-
Tarasenko V, Vinogradov N, Beloplotov D, Burachenko A, Lomaev M, Sorokin D. Influence of nanoparticles and metal vapors on the color of laboratory and atmospheric discharges. Nanomaterials. 2022 Feb 15; 12:652. doi:10.3390/nano12040652.
Google Scholar
33