Coastal Environmental Impact of Geohazards in the Area of the Habibas Islands (Western Algeria, Alboran): Insights from GIS-Analysis and Remote Sensing

##plugins.themes.bootstrap3.article.main##

  •   Lübna Amir

  •   Barbara Theilen-Willige

Abstract

Algerian coastal areas in the southern part of the western Mediterranean Sea are prone to geohazards such as tsunami waves, storm surges, earthquakes, submarine mass movements, and volcanism. Located in the Gulf of Oran, the Habibas Archipelago is a well-preserved bio-environment where fauna and flora are unique. This region is nevertheless a zone where marine traffic (oil) and oil ports pose a threat to environmental offshore pollution. This study is focused on submarine mass movements and their potential to cause local tsunami waves. Digital Elevation Model (DEM) data and the DEM-derived morphometric maps support these investigations being integrated into a GeoInformation System (GIS). Bathymetric data of the western Mediterranean Sea are used to derive causal factors that influence the susceptibility to submarine mass movements. Sentinel 2, Landsat 8, and Sentinel 1 radar images help to identify coastal areas prone to landslides and the coast-near structural pattern. By integrating data collected from the literature and maps (geology, tectonics, earthquakes, mass movements) into a GeoInformationSystem (GIS) and by using remote sensing analysis, it might be possible to derive more precisely in the case of submarine landslides and turbidity currents in the which direction potential tsunami waves caused by these mass movements might be focused and directed.


Keywords: Earthquakes, GIS, Habibas, Remote Sensing, Submarine Mass Movement, Tsunami, Western Mediterranean.

References

Urgeles R, Camerlenghi A. Submarine landslides of the Mediterranean Sea: Trigger mechanisms, dynamics, and frequency-magnitude distribution. J. Geoph. Res. Earth Surf. 2013; 118: 2600-2618. doi: 10.1002/2013JF002720.

Camerlenghi A, Urgeles R, Fantoni L. A Database on Submarine Landslides of the Mediterranean Sea. Submarine Mass Movements and Their Consequences. 2010; 503– 513. doi: 10.1007/978-90-481-3071-9_41.

Field ME, Gardner JV. Pliocene-Pleistocene growth of the Rio Ebro margin, northeast Spain: A prograding-slope model. GSA Bulletin. 1990; 102: 721-733.

Lastras G, Canals M, Amblas D, Frigola J, Urgeles R, Calafat A.M., Acosta J. Slope Instability along the northeastern Iberian and Balearic continental margins. Geological Acta. 2007; 5(1): 35-47.

Papadopoulos GA, Gracia E, Urgeles R, Salares V, De Martini PM, Pantosti D, et al. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology. 2014; 354: 81-109.

SPA/RAC Specially Protected Areas Regional Activity Centre. [Internet] 2022; Available from: http://www.rac-spa.org/spami.

PIM Initiative. Préserver les petites ïles de Méditerranée. [Internet] 2022. Available from: http://initiative-pim.org/

CIESM. Marine geo-hazards in the Mediterranean. In: CIESM Workshop Monographs, ed. F. Briand, Monaco. 2011; 42: 192.

Lopez-Marinas JM, Salord R. El periodo sismico oranes de 1790 a la luz de la documentacion de los archivos espanoles. IGN Publication Madrid. 1990; 6: 64. Spanish.

Chimouni R, Harbi A, Boughacha MS, Hamidatou M, Kherchouche R., Sebaï A. The 1790 Oran Earthquake, a Seismic Event in Times of Conflict along the Algerian Coast: A Critical Review from Western and Local Source Materials. Seismological Research Letters. 2018; 89(6): 2392-2403. doi:10.1785/0220180175.

Buforn E, Coca P, Bezzeghoud M, Udias A, Bouhadad Y, Mattesini M. The destructive 1790 Oran (NW Algeria) earthquake in a region of low seismicity. Tectonophysics 2019; 759: 1-14.

Benbakhti IM, Maouche S, Belhai D, Harbi A, Ritz JF, Rabai G, Rezouk A, Doumaz F. Characterizing the active tectonics in the Oran region (Algeria) and recasting the 1790 earthquake. J. Seismol 2019; 22: 1549-1561.

Rodrigues M, Maleuvre C, Jolivet-Castelot M, D’Acremont E, Rabaute A, Lafosse M, et al. Tsunamigenic submarine landslides along the Xauen – Tofiño banks in the Alboran Sea (Western Mediterranean Sea). Geophys. J. Int. 2017; 209: 266-281.

Amir L, Cisternas A, Vigneresse JL, Dudley W, McAdoo B. Algeria’s vulnerability to tsunamis from near-field tsunamic sources. Science of Tsunami Hazards. 2012; 31(1): 82-98.

Amir L. Tsunami Hazard Assessment in the Alboran Sea for the Western Coast of Algeria. Journal of Shipping and Ocean Engineering 2014; 4: 43-51.

Medina F, Cherkaoui T-E. The South Western Alboran Earthquake Sequence of January – March 2016 and Its Associated Coulomb Stress Changes Open Journal of Earthquake Research 2017; 6: 35-54.

Elbanna A, Abdelmeguid M, Ma X, Amlani F, Bhat HS, Coastas S et al. Anatomy of strike-slip fault tsunami genesis. PNAS. 2021; 118: 1-11 doi:10.1073/pnas.2025632118.

MarineTraffic – Ship Tracking. Marine Traffic Live Ships Map. [Internet] 2022 (visited on the 21st of February 2022). Available from: https://www.marinetraffic.com.

GEBCO. Gridded Bathymetry Data [Internet]. 2022. Available from: https://www.gebco.net.

Natural Earth. 1:10m Physical Vectors [Internet]. 2022. Available from: http://www.naturalearthdata.com/downloads/10m-physical-vectors/

Reicherter KR, Huebscher C, Becker-Heidmann P. First evidence for an earthquake-induced tsunami and tsunamites in the western Mediterranean: the 1522 Almeria earthquake. Geologische Vereinigung International Conference. 2006 January, Potsdam.

Reicherter K, Becker H. Tsunami deposits in the western Mediterranean: remains of the 1522 Almeria earthquake. Geological Society, London, Special Publications. 2009; 316: 217-235.

National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. doi:10.7289/V5PN93H7.

Amir L, Cisternas A., Dudley W., McAdoo B. Coastal Impact of tsunami in industrial harbours: Study case of the Arzew – Mostaganem region (Western Coast of Algeria, North Africa). 3rd Speciality Conference on Disaster Prevention and Mitigation, 2013 May 29  June 1; Montreal, Quebec.

Casalbore D, Bosman A, Casas D, Chioci F, Martorelli E, Ridente D. Morphological Variability of Submarine Mass Movements in the Tectonically-Controlled Calabro-Tyrrhenian Continental Margin (Southern Italy). Geosciences. 2019; 9(1), 43: 1-14. doi:10.3390/geosciences9010043.

Lastras G, Canals M, Amblas D, Frigola J, Urgeles R, Calafat AM, Acosta J. Slope Instability along the northeastern Iberian and Balearic continental margins. Geological Acta. 2007; 5(1): 35-47.

Gauchery TTNM (2021): Submarine Landslides in the Central Mediterranean: Causes and Recurrences. Ph.D.Thesis, DOTTORATO DI RICERCA IN INGEGNERIA CIVILE, CHIMICA, AMBIENTALE E DEI MATERIALI, Alma Mater Studiorum - Università di Bologna, Ciclo 33, Settore Concorsuale: 08/A1 - IDRAULICA, IDROLOGIA, COSTRUZIONI IDRAULICHE E MARITTIME, Settore Scientifico Disciplinare: ICAR/02 - COSTRUZIONI IDRAULICHE E MARITTIME E IDROLOGIA, Esame finale anno 2021.

Sallarès V, Gràcia E, Urgeles R. (2011). Active faulting and slope failure in the Iberian margins: towards offshore geohazard mitigation. CIESM Workshop Monographs n°42, Marine geo-hazards in the Mediterranean- Nicosia, 2 - 5 February 2011: 113-120, in: CIESM, 2011. Marine geo-hazards in the Mediterranean. N° 42 in CIESM Workshop Monographs [F. Briand Ed.], 192 pages, Monaco.pp 101-112.

Guessoum N, Benhamouche AA, Bouhadad Y, Bourenane H, Abbouda M. Field evidence of Quaternary seismites in the Mostaganem-Relizane (western Algeria) region: seismotectonic implication. Arab. J. Geosci. 2018; 11(20): 1-13.

Theilen-Willige B, Mansouri R. Flooding Hazard Assessment Considering Climate Change in the Coastal Areas of Algeria Based on a Remote Sensing and GIS Data Base. In Al Saud, M. M. (eds) Applications of Space Techniques on the Natural Hazards in the MENA region, Springer, Cham. 2022; 29. doi: 10.1007//978-3-030-88874-9_10.

Instituto Geografico Nacional. Seismic information. [Internet] 2022. Available from https://www.ign.es.

Geofabrik downloads. Download OpenStreetMap Data for this region: Algeria. [Internet] 2022. Available from: http://download.geofabrik.de/africa/algeria.html.

Service de la carte géologique de l’Algérie Carte géologique de l’Algérie, Oran Nord, 1933-1940 & 1951-1952; Echelle 1:500 000e: 2ième édition.

Déverchère J, Yelles K, Domzig A, Mercier De Lépinay B, Bouillin JP, Gaullier V, et al. Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophysical Research Letters. 2005; 32:1-5. doi: 10.1029/2004GL021646.

Domzig A, Gaullier V, Giresse P, Pauc H, Deverchere J, Yelles K. Deposition processes from echo-character mapping along the western Algerian margin (Oran-Tenes), Western Mediterrranean. Marine and Petroleum Geology. 2009; 26: 673-694.

Cattaneo A, Babonneau N, Dan G, Déverchère J, Domzig A, Gaullier V, et al. Submarine Landslides Along the Algerian Margin: A Review of Their Occurrence and Potential Link with Tectonic Structures. Submarine Mass Movements and Their Consequences. 2010; 515-525. DOI:10.1007/978-90-481-3071-9_42.

Dan-Unterseh G, Savoye B, Gaullier V, Cattonio A, Deverchere J, Yelles K. and MARADJA 2003 TEAM Algeria Margin Sedimentation Patterns (Algiers area, Southwestern Mediterranean). SEPM Special Publication. 2011; 96: 69-84.

European Marine Observation and Data Network (EMODnet). EMODnet portals [Internet] 2022. Available from https://portal.emodnet-bathymetry.eu/?menu=19.

Global Volcanism Program, 2013. Volcanoes of the World, v. 4.10.6. Venzke, E (ed.). Smithsonian Institution. [Internet] Downloaded 21 May 2022. https://doi.org/10.5479/si.GVP.VOTW.4-2013. Available from: https///volcano.si.edu/database/webservices.cfm.

Conforti M, Rago V, Muto F, et al. GIS-Based statisticak analysis for Assessing shallow-landlside susceptibility along the highway in Calabria (Southern Italy). Rendiconti Online della Societa Geologica Italian. 2016; 39:155-158. Doi:10.3301/rol.2015.184.

Conforti M., Ietto F. Influence of Tectonics and Morphometric Features on the Landslide Distribution: A Case Study from the Mesima Basin (Calabria, Italy). Journal of Earth Science 2020; 31(2): 393-409. Doi:10.1007/s12583-019-1231-z.

Fernane L, Matougui R, Amarni N, Belkessa R. Variation in canyon morphology and their relationship with tectonic: the example of the western Algerian margin. Arabian Journal of Geosciences. 2022; 15: 254. doi:10.1007/s12517-022-09566-6.

Harbitz CB, Lovholt F, Pedersen G, Masson DG. Mechanisms of tsunami generation by submarine landslides: a short review. Norwegian Journal of Geology. 2006; 86:255-264.

Gauchery T, Rovere M, Pellegrini C, Cattaneo A, Campiani E, Trincardi F. Factors controlling margin instability during the Plio-Quaternary in the Gela Basin (Straits of Sicily, Mediterranean Sea). Marine and Petroleum Geology. 2021; 123: 104767 (21 p.) doi: 10.106/j.marpetgeo.2020.104767.

Zengaffinen-Morris T, Urgeles R, Lovholt F. On the Inference of Tsunami Uncertainties From Landslide Run-Out Observations. Journal of Geophysical Research: Oceans. 2022; 127: 1-30. doi: 10.1029/2021JC018033.

Ioualalen M, Migeon S, Sardoux O. Landslide tsunami vulnerability in the Ligurian Sea: Case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophysical Journal International. 2010; 181(2): 724-740. doi:10.1111/j.1365-246X.2010.04572x.

Tinti S, Armigliato A, Pagnoni G, Zaniboni F,R. Tonini L. Tsunamis in the Euro-Mediterranean region: emergency and long term counter measures. C I E S M Workshop Monographs, 42, Marine geo-hazards in the Mediterranean- Nicosia, 2 - 5 February 2011: 113-120, in: CIESM, 2011. Marine geo-hazards in the Mediterranean. N° 42 in CIESM Workshop Monographs [F. Briand Ed.], 192 pages, Monaco.

Theilen-Willige B. Emergency planning In Northern Algeria Based on Remote Sensing Data In Respect To Tsunami Hazard Preparedness. Science of Tsunami Hazards. 2006; 25(1): 3-12.

Theilen-Willige B. Contribution of Remote Sensing and GIS Methods to the Detection of Areas exposed to Flooding in the Coastal Zones of Northern-Algeria. Horst Kremers and Alberto Sushini (Eds): CODATA-Germany Lecture Notes in Information Science (LNIS) – Risk Information Management, Risks Models and Applications CODATA BERLIN 2015; 7: 77-89.

Okal EA. On the possibility of seismic recording of meteotsunamis. Natural Hazards. 2021; 106: 1125-1147.

Grevemeyer I, Gracia E, Villasenor A, Leuchters W, Watts AB. Seismicity and Active Tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data. J. Geophys. Res. Solid Earth. 2015; 120:8348-8365. doi:10.1002/2015JB012073.

Boukhedimi MA, Louni-Hacini A, Bouhadad Y, Ritz J-F, Machane D, Benhamouche A, Bourenane H. Evidences of seismites in coastal Quaternary deposits of western Oranie (northwestern Algeria). J. Seismol. 2017; 21: 539-549. doi:10.1007/s10950-016-9116-2.

Estrada F, Gonzales-Vida JM, Pelaez JA, Galindo-Zaldivar J, Ortega S, Macias J, et al. Tsunami generation potential of a strike-slip fault tip in the westernmost Mediterranean. Scientific Reports. 2021; 11: 16253. doi:101038/s41598-021-95729-6.

##plugins.themes.bootstrap3.article.details##

How to Cite
Amir, L., & Theilen-Willige, B. (2022). Coastal Environmental Impact of Geohazards in the Area of the Habibas Islands (Western Algeria, Alboran): Insights from GIS-Analysis and Remote Sensing. European Journal of Environment and Earth Sciences, 3(4), 48–58. https://doi.org/10.24018/ejgeo.2022.3.4.303