Geomorphologic and geologic Analysis of Satellite Data of the Betic and Rif orogenic Belts in the Western Mediterranean Sea
##plugins.themes.bootstrap3.article.main##
This study is focused on the description of the arcuated geomorphology and the structural pattern of the Betic and Rif Domain surrounding the West-Alboran Sea bordering S-Spain and N-Morocco based on remote sensing data. Sentinel 2, Landsat 8 and ASTER-images and Sentinel 1 radar images help to identify the structural pattern. Digital Elevation Model (DEM) data and the DEM derived morphometric maps support these investigations being integrated into a GeoInformation System (GIS). The evaluations of the various satellite data, especially after digital image processing of the Landsat thermal bands, contribute to the inventory of a large ring structure with more than 130 km in diameter. This distinct expressed ring structure becomes evident even more on slope gradient and dropraster maps.
References
-
Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, van den Driessche J, Babault J, Meyer B. Neogene exhumation and relief evolution in the eastern Betics (SE-Spain): insights from the Sierra de Gador. Terra Nova, 2017; 29(2):91-97. Available from: https://hal.archives-ouvertes.fr/hal-01447798.
Google Scholar
1
-
Martínez-García P, Comas M, Lonergan L, Watts AB. From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean. Tectonics, 2017; 36: 2777–2805. Available from: https://doi.org/10.1002/2017TC004489.
Google Scholar
2
-
Pedrera A, Galindo-Zaldívar J, Marín-Lechado C, García-Tortosa FJ, Ruano P, López Garrido AC, Azañón JM, Peláez JA, Giaconia F. Recent and active faults and folds in the central-eastern Internal Zones of the Betic Cordillera. Journal of Iberian Geology, 2012; 38 (1): 191-208. Available from:
Google Scholar
3
-
http://dx.doi.org/10.5209/rev_JIGE.2012.v38.n1.39213.
Google Scholar
4
-
Fadil A, Vernant P, McClusky S, Reilinger R, Gomez F, Ben Sari D, Mourabit T, Feigl K, Barazangi M. Active tectonics of the western Mediterranean: Geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco. Geology. 2006; 34 (7): 529. doi:10.1130/G22291.1.
Google Scholar
5
-
Soriano C, Cas RAF, Riggs NR, Giordano G. Submarine Volcanism of the Cabo de Gata Magmatic Arc in the Betic-Rif Orogen, SE Spain: Processes and Products. In: Nemeth K (ed.). Updates in Volcanology - From Volcano Modelling to Volcano Geology. IntechOpen. 2016 London. D M.C., doi: 10.5772/63579. Available from: https://www.intechopen.com/chapters/51456.
Google Scholar
6
-
Williams JR, Platt JP. A new structural and kinematic framework for the Alborán Domain (Betic–Rif arc, western Mediterranean orogenic system). Journal of the Geological Society, 2018; 175:465–496. Available from: https://doi.org/10.1144/jgs2017-086.
Google Scholar
7
-
Stich D, Martín R, Morales J, López-Comino JA, de Lis Mancilla F. Slip Partitioning in the 2016 Alboran Sea Earthquake Sequence (Western Mediterranean). Front. Earth Sci., 29 September 2020. Available from: | https://doi.org/10.3389/feart.2020.587356.
Google Scholar
8
-
Comas MC, Platt JP, Soto JI, Watts AB. The Origin and Tectonic History of the Alboran Basin: Insights from LEG 161 Results. Proceedings of the Ocean Drilling Program, Scientific Results. 1999; 161, Chapter in: Integrated Ocean Drilling Program: Preliminary Reports. February 1999. doi:10.2973/odp.proc.sr.161.262.1999.
Google Scholar
9
-
Bessière E, Jolivet L, Augier R, Scaillet S, Précigout J, Azañón JM, Crespo-Blanc A, Masini E, Do Couto D. Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics: the Betic-Rif Cordillera example. BSGF – Earth Sciences Bulletin. 2021; 192: 8. Available from: https://doi.org/10.1051/bsgf/2021007.
Google Scholar
10
-
Galindo-Zaldivar J, Gonzalez-Lodeiro F, Jabaloy A, Maldonado A, Schreider AA. Models of magnetic and Bouguer gravity anomalies for the deep structure of the central Alboran Sea basin. Geo-Marine Letters, 1998; 18: 10-18.
Google Scholar
11
-
Torne M, Fernandez M, Comas MC, Soto JL. Lithospheric Structure Beneath the Alboran Basin: Results from 3D Gravity Modeling and Tectonic Relevance. Journal of Geophysical Research, February 10.2000; 105 (B2): 3209-3228.
Google Scholar
12
-
European-Mediterranean Seismological Centre (EMSC).
Google Scholar
13
-
Available: https://www.emsc-csem.org/Earthquake/?filter=yes.
Google Scholar
14
-
International Seismologica] Centre (ISC), Available: http://www.isc.ac.uk/iscbulletin/search/catalogue/interactive/.
Google Scholar
15
-
US Geological Survey (USGS). Available: https://earthquake.usgs.gov/earthquakes/search/.
Google Scholar
16
-
Theilen-Willige B. Morphometric and structural Evaluations of Satellite Data from the Bosumtwi Impact Structure and adjacent Areas in Ashanti, Ghana. European Journal of Environment and Earth Sciences, May 2021; 2, (3). doi:10.24018/ejgeo.2021.2.3.137.
Google Scholar
17
-
Available from:
Google Scholar
18
-
General Bathymetric Chart of the Oceans (GEBCO), Available:
Google Scholar
19
-
https://www.gebco.net/data_and_products/gridded_bathymetry_data/.
Google Scholar
20
-
GEOFABRIK downloads. Available: http://download.geofabrik.de/.
Google Scholar
21
-
Lana C, Gibson RL, Reimold WU. Impact tectonics in the core of the Vredefort dome, South Africa: Implications for central uplift formation in very large impact structures. Meteoritics & Planetary Science, 2003;38 (7): 1093–1107. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1945-5100.2003.tb00300.x.
Google Scholar
22
-
Wieland F, Roger L, Gibson RL, Reimold WU. Structural analysis of the collar of the Vredefort Dome, South Africa—Significance for impact-related deformation and central uplift formation. Meteoritics & Planetary Science, 40, Nr 9/10, 1537–1554 (2005).
Google Scholar
23
-
Theilen-Willige B. Die Ringstruktur von Araguainha/Braslien. Conference proceedings and poster presentation, 7. Geowissensch. Lateinamerika-Kolloquium, Heidelberg, 19.-21.11.1980, Tagungsheft: 92, Heidelberg, 1980. Available from: https://www.researchgate.net/publication/333236864_7GeowissLateinamerika_Kolloquium.
Google Scholar
24
-
Theilen-Willige B. The Araguainha Impact Structure / Central Brazil, Revista Bras. Geociencias, 1981;11:91-97, Sao Paulo, Brazil. Available from: https://www.researchgate.net/publication/259576248_The_Araguainha_Impact_Structure_Central_Brazil.
Google Scholar
25
-
Mazzoli S, Martín-Algarra A, Reddy SM, López Sánchez-Vizcaíno V, Fedele L, Noviello A. Deformation partitioning during transpressional emplacement of a 'mantle extrusion wedge': The Ronda peridotites, Western Betic Cordillera, Spain. Journal of the Geological Society, February 2011, doi: 10.1144/0016-76492010-126.
Google Scholar
26
-
Guerrera F, Mancheno MA, Martín-Martín M, Raffaelli G, Rodriguez-Estrella T, Serrano F. Paleogene evolution of the External Betic Zone and geodynamic implications. Geologica Acta, 2014; 12 (3): 171-192 , doi:10.1344/ GeologicaActa2014.12.3.1.
Google Scholar
27
-
Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, Baldi P, Gasperini P. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int, 2007; 169: 1180–1200, doi: 10.1111/j.1365-246X.2007.03367.x.
Google Scholar
28
-
Ruiz-Constán A, Pedrera A, Galindo-Zaldivar J, Stich D, Morales J. (2 Recent and active tectonics in the western part of the Betic Cordillera. Journal of Iberian Geology, 2012; 38 (1): 161-174. Available from: http://dx.doi.org/10.5209/rev_JIGE.2012.v38.n1.39211.
Google Scholar
29
-
Gómez de la Peña L, Grevemeyer I, Kopp H, Díaz J, Gallart J, Booth‐Rea, G, et al. The lithospheric structure of the Gibraltar Arc System from wide‐angle seismic data. Journal of Geophysical Research: Solid Earth, 2020; 125, e2020JB019854. doi:10.1029/2020JB019854 Available from: https://doi.org/10.1029/2020JB019854.
Google Scholar
30
-
Osinski GR, Spray G. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science, 2005; 40(12): 1813–1834.
Google Scholar
31
-
Spektor K, Nylen J, Mathew R, Edén M, Stoyanov E, Navrotsky A, Leinenweber K, Häussermann U. Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments. American Mineralogist, 2016; 101: 2514–2524. Available from: https://doi.org/10.2138/am-2016-5609.
Google Scholar
32
Most read articles by the same author(s)
-
Barbara Theilen-Willige,
Iliass Naouadir,
Contribution of Remote Sensing and GIS to the Inventory and Analysis of Factors influencing on the Development of Karst Features in the Middle Atlas, Morocco , European Journal of Environment and Earth Sciences: Vol. 3 No. 6 (2022) -
Lübna Amir,
Barbara Theilen-Willige,
Coastal Environmental Impact of Geohazards in the Area of the Habibas Islands (Western Algeria, Alboran): Insights from GIS-Analysis and Remote Sensing , European Journal of Environment and Earth Sciences: Vol. 3 No. 4 (2022) -
Barbara Theilen-Willige,
Inventory of Ring Structures in N- and W-Morocco based on Satellite Data , European Journal of Environment and Earth Sciences: Vol. 4 No. 1 (2023)