##plugins.themes.bootstrap3.article.main##

This study is focused on the description of the arcuated geomorphology and the structural pattern of the Betic and Rif Domain surrounding the West-Alboran Sea bordering S-Spain and N-Morocco based on remote sensing data. Sentinel 2, Landsat 8 and ASTER-images and Sentinel 1 radar images help to identify the structural pattern. Digital Elevation Model (DEM) data and the DEM derived morphometric maps support these investigations being integrated into a GeoInformation System (GIS). The evaluations of the various satellite data, especially after digital image processing of the Landsat thermal bands, contribute to the inventory of a large ring structure with more than 130 km in diameter. This distinct expressed ring structure becomes evident even more on slope gradient and dropraster maps.

References

  1. Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, van den Driessche J, Babault J, Meyer B. Neogene exhumation and relief evolution in the eastern Betics (SE-Spain): insights from the Sierra de Gador. Terra Nova, 2017; 29(2):91-97. Available from: https://hal.archives-ouvertes.fr/hal-01447798.
     Google Scholar
  2. Martínez-García P, Comas M, Lonergan L, Watts AB. From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean. Tectonics, 2017; 36: 2777–2805. Available from: https://doi.org/10.1002/2017TC004489.
     Google Scholar
  3. Pedrera A, Galindo-Zaldívar J, Marín-Lechado C, García-Tortosa FJ, Ruano P, López Garrido AC, Azañón JM, Peláez JA, Giaconia F. Recent and active faults and folds in the central-eastern Internal Zones of the Betic Cordillera. Journal of Iberian Geology, 2012; 38 (1): 191-208. Available from:
     Google Scholar
  4. http://dx.doi.org/10.5209/rev_JIGE.2012.v38.n1.39213.
     Google Scholar
  5. Fadil A, Vernant P, McClusky S, Reilinger R, Gomez F, Ben Sari D, Mourabit T, Feigl K, Barazangi M. Active tectonics of the western Mediterranean: Geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco. Geology. 2006; 34 (7): 529. doi:10.1130/G22291.1.
     Google Scholar
  6. Soriano C, Cas RAF, Riggs NR, Giordano G. Submarine Volcanism of the Cabo de Gata Magmatic Arc in the Betic-Rif Orogen, SE Spain: Processes and Products. In: Nemeth K (ed.). Updates in Volcanology - From Volcano Modelling to Volcano Geology. IntechOpen. 2016 London. D M.C., doi: 10.5772/63579. Available from: https://www.intechopen.com/chapters/51456.
     Google Scholar
  7. Williams JR, Platt JP. A new structural and kinematic framework for the Alborán Domain (Betic–Rif arc, western Mediterranean orogenic system). Journal of the Geological Society, 2018; 175:465–496. Available from: https://doi.org/10.1144/jgs2017-086.
     Google Scholar
  8. Stich D, Martín R, Morales J, López-Comino JA, de Lis Mancilla F. Slip Partitioning in the 2016 Alboran Sea Earthquake Sequence (Western Mediterranean). Front. Earth Sci., 29 September 2020. Available from: | https://doi.org/10.3389/feart.2020.587356.
     Google Scholar
  9. Comas MC, Platt JP, Soto JI, Watts AB. The Origin and Tectonic History of the Alboran Basin: Insights from LEG 161 Results. Proceedings of the Ocean Drilling Program, Scientific Results. 1999; 161, Chapter in: Integrated Ocean Drilling Program: Preliminary Reports. February 1999. doi:10.2973/odp.proc.sr.161.262.1999.
     Google Scholar
  10. Bessière E, Jolivet L, Augier R, Scaillet S, Précigout J, Azañón JM, Crespo-Blanc A, Masini E, Do Couto D. Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics: the Betic-Rif Cordillera example. BSGF – Earth Sciences Bulletin. 2021; 192: 8. Available from: https://doi.org/10.1051/bsgf/2021007.
     Google Scholar
  11. Galindo-Zaldivar J, Gonzalez-Lodeiro F, Jabaloy A, Maldonado A, Schreider AA. Models of magnetic and Bouguer gravity anomalies for the deep structure of the central Alboran Sea basin. Geo-Marine Letters, 1998; 18: 10-18.
     Google Scholar
  12. Torne M, Fernandez M, Comas MC, Soto JL. Lithospheric Structure Beneath the Alboran Basin: Results from 3D Gravity Modeling and Tectonic Relevance. Journal of Geophysical Research, February 10.2000; 105 (B2): 3209-3228.
     Google Scholar
  13. European-Mediterranean Seismological Centre (EMSC).
     Google Scholar
  14. Available: https://www.emsc-csem.org/Earthquake/?filter=yes.
     Google Scholar
  15. International Seismologica] Centre (ISC), Available: http://www.isc.ac.uk/iscbulletin/search/catalogue/interactive/.
     Google Scholar
  16. US Geological Survey (USGS). Available: https://earthquake.usgs.gov/earthquakes/search/.
     Google Scholar
  17. Theilen-Willige B. Morphometric and structural Evaluations of Satellite Data from the Bosumtwi Impact Structure and adjacent Areas in Ashanti, Ghana. European Journal of Environment and Earth Sciences, May 2021; 2, (3). doi:10.24018/ejgeo.2021.2.3.137.
     Google Scholar
  18. Available from:
     Google Scholar
  19. General Bathymetric Chart of the Oceans (GEBCO), Available:
     Google Scholar
  20. https://www.gebco.net/data_and_products/gridded_bathymetry_data/.
     Google Scholar
  21. GEOFABRIK downloads. Available: http://download.geofabrik.de/.
     Google Scholar
  22. Lana C, Gibson RL, Reimold WU. Impact tectonics in the core of the Vredefort dome, South Africa: Implications for central uplift formation in very large impact structures. Meteoritics & Planetary Science, 2003;38 (7): 1093–1107. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1945-5100.2003.tb00300.x.
     Google Scholar
  23. Wieland F, Roger L, Gibson RL, Reimold WU. Structural analysis of the collar of the Vredefort Dome, South Africa—Significance for impact-related deformation and central uplift formation. Meteoritics & Planetary Science, 40, Nr 9/10, 1537–1554 (2005).
     Google Scholar
  24. Theilen-Willige B. Die Ringstruktur von Araguainha/Braslien. Conference proceedings and poster presentation, 7. Geowissensch. Lateinamerika-Kolloquium, Heidelberg, 19.-21.11.1980, Tagungsheft: 92, Heidelberg, 1980. Available from: https://www.researchgate.net/publication/333236864_7GeowissLateinamerika_Kolloquium.
     Google Scholar
  25. Theilen-Willige B. The Araguainha Impact Structure / Central Brazil, Revista Bras. Geociencias, 1981;11:91-97, Sao Paulo, Brazil. Available from: https://www.researchgate.net/publication/259576248_The_Araguainha_Impact_Structure_Central_Brazil.
     Google Scholar
  26. Mazzoli S, Martín-Algarra A, Reddy SM, López Sánchez-Vizcaíno V, Fedele L, Noviello A. Deformation partitioning during transpressional emplacement of a 'mantle extrusion wedge': The Ronda peridotites, Western Betic Cordillera, Spain. Journal of the Geological Society, February 2011, doi: 10.1144/0016-76492010-126.
     Google Scholar
  27. Guerrera F, Mancheno MA, Martín-Martín M, Raffaelli G, Rodriguez-Estrella T, Serrano F. Paleogene evolution of the External Betic Zone and geodynamic implications. Geologica Acta, 2014; 12 (3): 171-192 , doi:10.1344/ GeologicaActa2014.12.3.1.
     Google Scholar
  28. Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, Baldi P, Gasperini P. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int, 2007; 169: 1180–1200, doi: 10.1111/j.1365-246X.2007.03367.x.
     Google Scholar
  29. Ruiz-Constán A, Pedrera A, Galindo-Zaldivar J, Stich D, Morales J. (2 Recent and active tectonics in the western part of the Betic Cordillera. Journal of Iberian Geology, 2012; 38 (1): 161-174. Available from: http://dx.doi.org/10.5209/rev_JIGE.2012.v38.n1.39211.
     Google Scholar
  30. Gómez de la Peña L, Grevemeyer I, Kopp H, Díaz J, Gallart J, Booth‐Rea, G, et al. The lithospheric structure of the Gibraltar Arc System from wide‐angle seismic data. Journal of Geophysical Research: Solid Earth, 2020; 125, e2020JB019854. doi:10.1029/2020JB019854 Available from: https://doi.org/10.1029/2020JB019854.
     Google Scholar
  31. Osinski GR, Spray G. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science, 2005; 40(12): 1813–1834.
     Google Scholar
  32. Spektor K, Nylen J, Mathew R, Edén M, Stoyanov E, Navrotsky A, Leinenweber K, Häussermann U. Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments. American Mineralogist, 2016; 101: 2514–2524. Available from: https://doi.org/10.2138/am-2016-5609.
     Google Scholar