##plugins.themes.bootstrap3.article.main##

The study concerns the analysis of physic-chemical parameters in order to establish the state of pollution of a garbage dump site. The interpretation of the data is done by standardized principal component analysis. Thus, leachate samples were taken at 9 study stations in wet and dry periods. The results show that among the parameters studied, there is a high content of BOD5 (592,035 mg/L), EC (16,786 mS/cm) and COD (1373,684 mg/L). The concentration level of nitrates and nitrites greatly exceeds the norm; for the old landfill, the NO2- contents vary from 191,527 mg/L to 875,206 mg/L and the NO3- ranging from 384,926 mg/L to 1584,021 mg/L, we thus observe the influence of humidity on the concentrations of physic-chemical parameters. Furthermore, the chemical composition and mass concentrations of pollutants at the sites are highly dependent on the nature of the waste and the degree of pollution differs from one site to another. The considerable increase in the content of these pollutants is favored by bacterial activities during the transformation of the organic matter present in the leachate. However, the importance of the degree of contamination of the landfill favoring the pollution of the receiving environment is confirmed.

 

References

  1. Direction générale de la santé (DGS). L’eau potable en France, 2002–2004. Guide technique Eau et santé, juil. 2005, 53p.
     Google Scholar
  2. Halvvani J, Ouddane B. Contamination par les nitrates des eaux souterraines de la plaine - Cahiers Santé, 1999
     Google Scholar
  3. Mouissi S., Alayat H. Use of the principal component analysis (PCA) for physico-chemical charcterization of an aquatic ecosystem water: case of Oubeira Lake (Extreme Northeastern Algeria), 2016.
     Google Scholar
  4. Gérin M., Gosselin P., Cordier S. et al. Environnement et santé publique. Fondements et pratiques. Éditions Tec & Doc, Edisem, fév. 2003, 1023 p.
     Google Scholar
  5. Dossier santé et environnement. Actualité et Dossier en santé publique, 1995, n°13, 43 p.
     Google Scholar
  6. Cloutier V., Lefebvre R., Therrien R. & Savard M. M. Multi Variate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 2008;353:294–313.
     Google Scholar
  7. Boukerche S., Aouacheri W., Saka S. Toxicological effects of nitrate: biological study in human and animal, 2007.
     Google Scholar
  8. Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) _ Agence de la transition écologique_ 2018,
     Google Scholar
  9. Jakszyn P., Agudo A., Ibanez R., Garcia-Closas R., Pera G., Amiano P. & Gonzalez C. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J. Nutr., 2004;134, 2011–2014.
     Google Scholar
  10. Zmirou D., Bard D., Dab W. et al. Quels risques pour notre santé ? Syros, 2000, 335 p.
     Google Scholar
  11. Testud F. Engrais minéraux. EMC Toxicologie Pathologie. 2004:21–28.
     Google Scholar
  12. Vilaginès R. Eau, Environnement et santé publique. Introduction à l’hydrologie. Éditions Tec & Doc, 2003, 2ème éd., 109 p.
     Google Scholar


Most read articles by the same author(s)