Geomagnetic Storm Related to Disturbance Storm Time Indices Geomagnetic Storm
##plugins.themes.bootstrap3.article.main##
The magnitude of the Disturbance Storm Time (Dst) index varied in relation to the extremely small negative integer that indicated a large geomagnetic storm. The large sharpened variants of negative Dst indices could describe the detailed features of a geomagnetic storm. the Dst index was estimated using an algorithm through time and frequency-domain band-stop filtering to remove the solar-quiet variation and the mutual coupling effects between the Earth’s rotation, the Moon’s orbit, and the Earth’s orbit around the Sun. A good geomagnetic model that could describe the true variations in the geomagnetic field when undergoing diverse space weather, and one that could even predict variations in the geomagnetic field with a high accuracy. A suitable temporal resolution for the Dst index was per hour.
References
-
H. S. Jones, “Geomagnetism,” 1st Edition, Annals of the International Geophysical Year, Vol. 4, ELSEVIER, 197 pp, 1957. ISBN: 9781483226477
Google Scholar
1
-
W. H. Campbell, “Geomagnetic storms, the Dst ring-current myth and lognormal distributions,” Journal of Atmospheric and Terrestrial Physics, Vol. 58 (10), pp. 1171-1187, 1996. doi: 10.1016/0021-9169(95)00103-4.
Google Scholar
2
-
K. Mursula, L. Holappa, A. Karinen, “Correct normalization of the Dst index,” Astrophysics and Space Sciences Transactions, Vol. 4 (2), pp. 41-45, 2008. doi: 10.5194/astra-4-41-2008.
Google Scholar
3
-
M. Jawad, A. Rafique, I. Khosa, I. Ghous, J. Akhtar, S. M. Ali, “Improving Disturbance Storm Time Index Prediction Using Linear and Nonlinear Parametric Models: A Comprehensive Analysis,” IEEE Transactions on Plasma Science, Vol. 47 (2), pp. 1429-1444, 2019. doi: 10.1109/TPS.2018.2887202.
Google Scholar
4
-
H. Singer, L. Matheson, R. Grubb, A. Newman, D. Bouwer, “Monitoring space weather with the GOES magnetometers, Proceedings, Vol. 2812, GOES-8 and Beyond,” 1996 Internal Symposium on Optical Science, Engineering, and Instrumentation, SPIE (the international society for optics and photonics), 1996. doi: 10.1117/12.254077.
Google Scholar
5
-
J. E. Borovsky, M. H. Denton, “Magnetic field at geosynchronous orbit during high‐speed stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt,” Journal of Geophysical Research: Space Physics, Vol. 115, A8, 2010. doi: doi.org/10.1029/2009JA015116.
Google Scholar
6
-
D. C. Ferguson, S. P. Worden, D. E. Hastings, “The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems,” IEEE Transactions on Plasma Science, Vol. 43 (9), pp. 308-3098, 2015. doi: 10.1109/TPS.2015.2412775.
Google Scholar
7
-
N. Lugaz, C. J. Farrugia, C. L. Huang, R. M. Winslow, H. Spence, N. A. Schwadron, “Earth’s magnetosphere and outer radiation belt under sub-Alfvénic solar wind,” Nature Communications, Vol. 7, 13001, 2016. doi: 10.1038/ncomms13001.
Google Scholar
8
-
J. P. Fulbright, E. Kline, D. R. Pogorzala, W. MacKenzie, J. Sims, R. Garnett, C. Burnett, M. Seybold, “Calibration/validation status for GOES-16 L1b data products,” Proceedings, Earth Observing Systems XXII; 104020T, SPIE (the international society for optics and photonics), Vol. 10402, 2017. doi: 10.1117/12.2274358.
Google Scholar
9
-
V. V. Kalegaev, N. A. Vlasova, I. S. Nazarkov, S. A. Melkova, “Magnetospheric access for solar protons during the January 2005 SEP event,” Journal of Space Weather and Space Climate, Vol. 8, A55, 2018. doi:10.1051/swsc/2018040.
Google Scholar
10
-
T. M. Loto’aniu, R. J. Redmon, S. Califf, H. J. Singer, W. Rowland, S. Macintyre, C. Chastain, R. Dence, R. Bailey, E. Shoemaker, F. J. Rich, D. Chu, D. Early, J. Kronenwetter, M. Todirita, “The GOES-16 Spacecraft Science Magnetometer,” Space Science Reviews, Vol. 215, 32, 2019. doi: 10.1007/s11214-019-0600-3.
Google Scholar
11
-
S. Califf, D. Early, M. Grotenhuis, T. M. Loto'aniu, J. Kronenwetter, “Correcting the Arcjet Thruster Disturbance in GOES‐16 Magnetometer Data,” Vol. 18 (1), 2020. e2019SW002347, doi: 10.1029/2019SW002347.
Google Scholar
12
-
J. McCorkel, B. Efremova, J. Hair, M. Andrade, B. Holben, “GOES-16 ABI solar reflective channel validation for earth science application,” Remote Sensing of Environment, Vol. 237, 111438, 2020. doi: 10.1016/j.rse.2019.111438.
Google Scholar
13
-
R. J. Redmon, D. B. Seaton, R. Steenburgh, J. He, J. V. Rodriguez, September 2017's Geoeffective Space Weather and Impacts to Caribbean Radio Communications During Hurricane Response, Vol. 16 (9), pp. 1190-1201, 2018. doi: 10.1029/2018SW001897.
Google Scholar
14
-
A. Gil, R. Modzelewska, S. Moskwa, A. Siluszyk, M. Siluszyk, A. Wawrzynczak, M. Pozoga, L. Tomasik, “The Solar Event of 14 – 15 July 2012 and Its Geoeffectiveness,” Solar Physics, Vol. 295, 135, 2020. doi: 10.1007/s11207-020-01703-2.
Google Scholar
15
-
Piersanti, M., Michelis, P., D., Moro, D. D., Tozzi, R., Pezzopane, M., Consolini, G., Marcucci, M. F., Laurenza, M., Matteo, S. D., Pignalberi, A., Quattrociocchi, V. and Diego, P., 2020, From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm, Annales Geophysicae, Vol. 38 (3), 703–724, doi: 10.5194/angeo-38-703-2020.
Google Scholar
16
-
J. W. Lin, “Real-time Magnetic Observatory Network: A Review,” European Journal of Environment and Earth Sciences, Vol. 2(5), pp. 1-2, 2021. doi: 10.24018/ejgeo.2021.2.5.177.
Google Scholar
17
-
S. Watari, M. Kunitake, Watanabe, “The Bastille Day (14 July 2000) event in Historical Large Sun–Earth Connection Events,” Solar Physics, Vol. 204, pp. 425–438, 2001.
Google Scholar
18
-
J. J. Love, “Magnetic monitoring of earth and space,” Physics Today, Vol. 61 (2), pp. 31-37, 2008. doi: 10.1063/1.2883907.
Google Scholar
19
-
T. L. Pulkkinen, N. Y. Ganushkina, E. L. Tanskane, M. Kubyshkina, G. D. Reeves, M. F. Thomsen, C. T. Russell, H. J. Singer, J. A. Slavin, J. Gjertoev, “Magnetospheric current systems during stormtime sawtooth events,” Journal of Geophysical Research: Space Physics, Vol. 111, 2006. A11S17, doi: 10.1029/2006JA011627.
Google Scholar
20
-
J. J. Love, J. L. Gannon, “Revised Dst and the epicycles of magnetic disturbance: 1958–2007,” Annales Geophysicae, Vol. 27 (8), pp. 3101–3131, 2009. Doi: 10.5194/angeo-27-3101-2009.
Google Scholar
21
-
J. L. Gannon, J. J. Love, “USGS 1-min Dst index,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 73, no. 2–3, pp. 323-334, 2011. doi: 10.1016/j.jastp.2010.02.013.
Google Scholar
22
-
M. Mandea, M. Korte, “Geomagnetic Observations and Models, Springer, Netherlands, 344 pp, 2011. ISBN: 978-90-481-9857-3, doi: 10.1007/978-90-481-9858-0.
Google Scholar
23
-
L.A. Dremukhina, L. G. Lodkina, Y. I. Yermolaey, Relationship between the Parameters of Various Solar Wind Types and Geomagnetic Activity Indices,” Cosmic Research, Vol. 56, pp, 426–433, 2018. doi: 10.1134/S0010952518060011.
Google Scholar
24
Most read articles by the same author(s)
-
Jyh-Woei Lin,
Brief Introduce of Planetary K-index: An Indicator of Geomagnetic Storms , European Journal of Environment and Earth Sciences: Vol. 2 No. 5 (2021) -
Jyh-Woei Lin,
Space Radiation of Solar Storm: A Meeting Report in Taiwan , European Journal of Environment and Earth Sciences: Vol. 2 No. 6 (2021) -
Jyh-Woei Lin,
Real-time Magnetic Observatory Network: A Review , European Journal of Environment and Earth Sciences: Vol. 2 No. 5 (2021) -
Jyh-Woei Lin,
Magnetic Field Measurements by the Satellite Systems: A Review , European Journal of Environment and Earth Sciences: Vol. 2 No. 4 (2021)