##plugins.themes.bootstrap3.article.main##

The magnitude of the Disturbance Storm Time (Dst) index varied in relation to the extremely small negative integer that indicated a large geomagnetic storm. The large sharpened variants of negative Dst indices could describe the detailed features of a geomagnetic storm. the Dst index was estimated using an algorithm through time and frequency-domain band-stop filtering to remove the solar-quiet variation and the mutual coupling effects between the Earth’s rotation, the Moon’s orbit, and the Earth’s orbit around the Sun. A good geomagnetic model that could describe the true variations in the geomagnetic field when undergoing diverse space weather, and one that could even predict variations in the geomagnetic field with a high accuracy. A suitable temporal resolution for the Dst index was per hour.

References

  1. H. S. Jones, “Geomagnetism,” 1st Edition, Annals of the International Geophysical Year, Vol. 4, ELSEVIER, 197 pp, 1957. ISBN: 9781483226477
     Google Scholar
  2. W. H. Campbell, “Geomagnetic storms, the Dst ring-current myth and lognormal distributions,” Journal of Atmospheric and Terrestrial Physics, Vol. 58 (10), pp. 1171-1187, 1996. doi: 10.1016/0021-9169(95)00103-4.
     Google Scholar
  3. K. Mursula, L. Holappa, A. Karinen, “Correct normalization of the Dst index,” Astrophysics and Space Sciences Transactions, Vol. 4 (2), pp. 41-45, 2008. doi: 10.5194/astra-4-41-2008.
     Google Scholar
  4. M. Jawad, A. Rafique, I. Khosa, I. Ghous, J. Akhtar, S. M. Ali, “Improving Disturbance Storm Time Index Prediction Using Linear and Nonlinear Parametric Models: A Comprehensive Analysis,” IEEE Transactions on Plasma Science, Vol. 47 (2), pp. 1429-1444, 2019. doi: 10.1109/TPS.2018.2887202.
     Google Scholar
  5. H. Singer, L. Matheson, R. Grubb, A. Newman, D. Bouwer, “Monitoring space weather with the GOES magnetometers, Proceedings, Vol. 2812, GOES-8 and Beyond,” 1996 Internal Symposium on Optical Science, Engineering, and Instrumentation, SPIE (the international society for optics and photonics), 1996. doi: 10.1117/12.254077.
     Google Scholar
  6. J. E. Borovsky, M. H. Denton, “Magnetic field at geosynchronous orbit during high‐speed stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt,” Journal of Geophysical Research: Space Physics, Vol. 115, A8, 2010. doi: doi.org/10.1029/2009JA015116.
     Google Scholar
  7. D. C. Ferguson, S. P. Worden, D. E. Hastings, “The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems,” IEEE Transactions on Plasma Science, Vol. 43 (9), pp. 308-3098, 2015. doi: 10.1109/TPS.2015.2412775.
     Google Scholar
  8. N. Lugaz, C. J. Farrugia, C. L. Huang, R. M. Winslow, H. Spence, N. A. Schwadron, “Earth’s magnetosphere and outer radiation belt under sub-Alfvénic solar wind,” Nature Communications, Vol. 7, 13001, 2016. doi: 10.1038/ncomms13001.
     Google Scholar
  9. J. P. Fulbright, E. Kline, D. R. Pogorzala, W. MacKenzie, J. Sims, R. Garnett, C. Burnett, M. Seybold, “Calibration/validation status for GOES-16 L1b data products,” Proceedings, Earth Observing Systems XXII; 104020T, SPIE (the international society for optics and photonics), Vol. 10402, 2017. doi: 10.1117/12.2274358.
     Google Scholar
  10. V. V. Kalegaev, N. A. Vlasova, I. S. Nazarkov, S. A. Melkova, “Magnetospheric access for solar protons during the January 2005 SEP event,” Journal of Space Weather and Space Climate, Vol. 8, A55, 2018. doi:10.1051/swsc/2018040.
     Google Scholar
  11. T. M. Loto’aniu, R. J. Redmon, S. Califf, H. J. Singer, W. Rowland, S. Macintyre, C. Chastain, R. Dence, R. Bailey, E. Shoemaker, F. J. Rich, D. Chu, D. Early, J. Kronenwetter, M. Todirita, “The GOES-16 Spacecraft Science Magnetometer,” Space Science Reviews, Vol. 215, 32, 2019. doi: 10.1007/s11214-019-0600-3.
     Google Scholar
  12. S. Califf, D. Early, M. Grotenhuis, T. M. Loto'aniu, J. Kronenwetter, “Correcting the Arcjet Thruster Disturbance in GOES‐16 Magnetometer Data,” Vol. 18 (1), 2020. e2019SW002347, doi: 10.1029/2019SW002347.
     Google Scholar
  13. J. McCorkel, B. Efremova, J. Hair, M. Andrade, B. Holben, “GOES-16 ABI solar reflective channel validation for earth science application,” Remote Sensing of Environment, Vol. 237, 111438, 2020. doi: 10.1016/j.rse.2019.111438.
     Google Scholar
  14. R. J. Redmon, D. B. Seaton, R. Steenburgh, J. He, J. V. Rodriguez, September 2017's Geoeffective Space Weather and Impacts to Caribbean Radio Communications During Hurricane Response, Vol. 16 (9), pp. 1190-1201, 2018. doi: 10.1029/2018SW001897.
     Google Scholar
  15. A. Gil, R. Modzelewska, S. Moskwa, A. Siluszyk, M. Siluszyk, A. Wawrzynczak, M. Pozoga, L. Tomasik, “The Solar Event of 14 – 15 July 2012 and Its Geoeffectiveness,” Solar Physics, Vol. 295, 135, 2020. doi: 10.1007/s11207-020-01703-2.
     Google Scholar
  16. Piersanti, M., Michelis, P., D., Moro, D. D., Tozzi, R., Pezzopane, M., Consolini, G., Marcucci, M. F., Laurenza, M., Matteo, S. D., Pignalberi, A., Quattrociocchi, V. and Diego, P., 2020, From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm, Annales Geophysicae, Vol. 38 (3), 703–724, doi: 10.5194/angeo-38-703-2020.
     Google Scholar
  17. J. W. Lin, “Real-time Magnetic Observatory Network: A Review,” European Journal of Environment and Earth Sciences, Vol. 2(5), pp. 1-2, 2021. doi: 10.24018/ejgeo.2021.2.5.177.
     Google Scholar
  18. S. Watari, M. Kunitake, Watanabe, “The Bastille Day (14 July 2000) event in Historical Large Sun–Earth Connection Events,” Solar Physics, Vol. 204, pp. 425–438, 2001.
     Google Scholar
  19. J. J. Love, “Magnetic monitoring of earth and space,” Physics Today, Vol. 61 (2), pp. 31-37, 2008. doi: 10.1063/1.2883907.
     Google Scholar
  20. T. L. Pulkkinen, N. Y. Ganushkina, E. L. Tanskane, M. Kubyshkina, G. D. Reeves, M. F. Thomsen, C. T. Russell, H. J. Singer, J. A. Slavin, J. Gjertoev, “Magnetospheric current systems during stormtime sawtooth events,” Journal of Geophysical Research: Space Physics, Vol. 111, 2006. A11S17, doi: 10.1029/2006JA011627.
     Google Scholar
  21. J. J. Love, J. L. Gannon, “Revised Dst and the epicycles of magnetic disturbance: 1958–2007,” Annales Geophysicae, Vol. 27 (8), pp. 3101–3131, 2009. Doi: 10.5194/angeo-27-3101-2009.
     Google Scholar
  22. J. L. Gannon, J. J. Love, “USGS 1-min Dst index,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 73, no. 2–3, pp. 323-334, 2011. doi: 10.1016/j.jastp.2010.02.013.
     Google Scholar
  23. M. Mandea, M. Korte, “Geomagnetic Observations and Models, Springer, Netherlands, 344 pp, 2011. ISBN: 978-90-481-9857-3, doi: 10.1007/978-90-481-9858-0.
     Google Scholar
  24. L.A. Dremukhina, L. G. Lodkina, Y. I. Yermolaey, Relationship between the Parameters of Various Solar Wind Types and Geomagnetic Activity Indices,” Cosmic Research, Vol. 56, pp, 426–433, 2018. doi: 10.1134/S0010952518060011.
     Google Scholar