##plugins.themes.bootstrap3.article.main##

This work studies the characteristics of pyroclastic (materials) and evaluates the environmental impacts due to the opening of a pyroclastic quarry in the Tombel graben area saturated lime test, specific surface determination, mechanical resistivity index within long and short terms have been used to characterize pozzolan materials in the study area and it’s important to the cement industry while environmental impact was determined through soil permeability test and nuisance noise. From the results obtained, samples had very large specific surfaces (>3500 Cm2/g) and highly reactive with lime. The samples studied are in conformity with standard mechanical resistivity index SAI. For cement manufacture. The environmental impacts define an "absolute average" impacts relating to the opening of the quarry. Hence a particular attention is needed in this area of study and mitigation measures have been proposed.

References

  1. D.M. Franks, L. Pakoun, C. Ngonze. Development Minerals: Transforming a neglected sector in Africa, the Caribbean and the Pacific. United Nations Development Programme, 2016.
     Google Scholar
  2. H. Gavin. Les Minéraux du Développement dans les pays d’Afrique, des Caraïbes et du Pacifique Programme ACP-UE en Faveur des Minéraux du Développement. Mise en oeuvre en partenariat avec le PNUD, 126P, 2016.
     Google Scholar
  3. Etude des réserves en matériaux pouzzolanité à la périphérie nord- Est de la chaîne des Puys. Rap BRGM 80 SGN 168 AUV et CETE PD 78/316, 103p + cartes 173p. BRGM, 1995.
     Google Scholar
  4. Document de stratégie pour la croissance et l’emploi.174p. DSCE, 2008.
     Google Scholar
  5. C. Vernet et G. Cadoret, Compte- rendus du Colloque "Voies Nouvelles du Béton", Suivi en continu de l'évolution chimique et mécanique des bétons à hautes performances pendant les premiers jours, Cachan, France, pp. 17, 1991.
     Google Scholar
  6. J.P. Nzenti, P. Barbey, J.M. Bertrand and J. Macaudire, “La chaine panafricaine au Cameroun: cherchons une structure et un modèle”. 15e Réunion des Sciences de la Terre, Nancy, Société Géologique, France, Paris 16, 99 p, 1994.
     Google Scholar
  7. B. Déruelle, C. Moreau, C. Nkoumbou, R. Kambou, J. Lissom, E. Njonfang, R.T. Ghogomu, A Nono, “The Cameroon Line: a review. In: Kampunzu, A.B., R.T. Lubala (eds), Magmatism in extensional Structural Settings. Springer-Verlag, berlin heidelberg, 274-327. Across the Central African, shear zone in Adamaoua region in Cameroon West Africa,” Geophysics. J.R. Astron. Soc, 86, pp. 751-766. 1991.
     Google Scholar
  8. B. Geze, Géographie physique et géologique du Cameroun occidental. Mem. Mus. Nat. Hist. Natur nouv. Serie., t.17, pp. 1-272, 1943.
     Google Scholar
  9. J. Gouhier, J. Nougier, et D. Nougier, “Contribution à l’étude volcanologique du Cameroun: Ligne du Cameroun-Adamaoua, ” Annales Fac.Sci. Cameroun, n. 17, 3-49, 1974.
     Google Scholar
  10. F.M. Tchoua Contribution à l’étude volcanique du Cameroun “ Ligne du Cameroun –Adamaoua,” Am. Fac. Sc. Cam., 21-22, 1976.
     Google Scholar
  11. J.J. Ménard, J.M. Bardintzeff, A. Moundi, P. Wandji, I. Ngounouno, H. Bellon, Place du magmatisme transitionnel dans le volcanisme de la Ligne Volcanique du Cameroun. 19e Réunion des Sciences de la Terre, Nantes, 9-12 avril 2002. 357 p. 55.
     Google Scholar
  12. A. Moundi, P. Wandji, J.M. Bardintzeff, J.J. Menard, Kl. Njilah, I. Foumnoure, B. Ntieche, “Existence of quaternary ankaramites among tertiary flood basalts at koutaba (bamoun plateau, western Cameroon): petrologyand isotope data,” Review of the bulgarian geological society, vol. 70, part 1-3, pp 115-124, 2009.
     Google Scholar
  13. C. Moreau, J.-M. Regnoult, B. Déruelle, B. Robineau, “A new tectonic model for the Cameroon Line, Central Africa”, Tectonophysics, vol. 141, issue 4, pp. 317-334, 1987. https://doi.org/10.1016/0040-1951(87)90206-X.
     Google Scholar
  14. J.G. Fitton, “The Benue trough and Cameroon line, a migrating rift system in West Africa,” Earth planet. Sci. Lett., 51,132-8, 1980.
     Google Scholar
  15. F.M. Tchoua, Contribution à l’étude géologique et pétrographique de quelques volcans de la ligne du Cameroun (Mont Manengouba et Bambouto). Thèse d’Etat Univ. Clermont Ferrand, 337 p., 1974.
     Google Scholar
  16. P. Wandji, J.P.F Tsafack, J-M. Bardintzeff, D.G. Nkouathio, D.A. Kagou, H. Bellon, H. Guillou, “Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa) petrogenetic implications Minéral,” Petrol., 96, pp 81-98, 2009.
     Google Scholar
  17. D.G. Nkouathio, P. Wandji, J.M. Bardintzeff and D.A. Kagou, Pyroclastic rocks as natural fertilizers in Cameroon. S06d-pt-148, IAVCEI General Assembly, Pucon, Chile, November pp 14-19, 2004.
     Google Scholar
  18. P.N. Lemougna, K-T. Wang, A.N. Qing tang, Nzeukou, Bilong, M.U. chinje, Cui X-M, Review on the use ofvolcanic ashes for engineering applications, resources, concervation & recycling 137. 177-190, 2018.
     Google Scholar
  19. J. Moon, S. Bae, K. Celik, S. Yoon, Ki-H. Kim, K.S. Kim, P.J.M. Monteiro, “Characterization of natural pozzolan-based geopolymeric binders,” Cement and Concrete Composites, vol. 53, 2014, pp. 97-104, ISSN 0958-9465.
     Google Scholar
  20. A. Bouyahayaoui, M. Cherkaoui1, L. Abidi and C. Toufik, “Mechanical and chemical characterisation of pozzolan of middele atlas in Morocco,” International Journal of Geomate, vol. 14, issue 41, pp. 126-134, 2018. Geotec., Const. Mat. & Env.
     Google Scholar
  21. DOI: https://doi.org/10.21660/2018.41.91013ISSN.
     Google Scholar
  22. R. Firdous, S. Dietmar, J.N. Yankwa Djobo, “Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics,” Construction and Building Materials, vol.190, 2018, Pages 1251-1263, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.09.191.
     Google Scholar
  23. G. Cai, T. Noguchi, H. Degée, J. Zhao, R. Kitagaki, K. Celik, M.D. Jackson Volcano-related materials in concretes: a comprehensive review. Environ Sci Pollut Res, 23:7220–724 3, 2016. DOI 10.1007/s11356-016-6161-z.
     Google Scholar
  24. P. Wandji, Le volcanisme récent de la plaine du Noun (Ouest Cameroun). Volcanologie, pétrologie, géochimie et pouzzolanicité. Thèse de doct. D’Etat, Univ. Yaoundé 1, Cameroun, 295p. + Planches publ. N°76. Pp 3-38, 1995.
     Google Scholar
  25. N. Mbowou, S. Owona, C.B. Tchamabe, J. Lissom, L. Bruno, G.E. Ekodeck, “Mineralogy and geochemistry of pozzolans from the Tombel Plain, Bamileke Plateau, and Noun Plain monogenetic volcanoes in the central part of the Cameroon Volcanic Line,” Acta Geochim, https://doi.org/10.1007/s11631-020-00403-9, 2020.
     Google Scholar
  26. D.G. Nkouathio, P. Wandji, J.-M. Bardintzeff, P. Tematio, D.A. Kagou Et F. Tchoua, « Utilisation des roches volcaniques pour la reminéralisation des sols ferralitiques des régions tropicales. Cas des pyroclastites basaltiques du graben de Tombel (Ligne volcanique du Cameroun), ” Bull. Soc. Vaud. Sc. Nat., 91.1: pp. 1-14, 2008.
     Google Scholar
  27. D.G. Nkouathio, Évolution tectono-magmatique et volcanologique de la ligne du Cameroun: comparaison avec un volcanisme de graben (plaine de Tombel) et d’un volcanisme de horst (monts bamboutos) thèse doct. Etat, univ. Yaoundé I Cameroun. 231p., 2006.
     Google Scholar
  28. A-A. Balog, C. Nicoleta, C. Aciu, D.A. Iluţiu-Varvara, “Valorification of Volcanic Tuff in Constructions and Materials Manufacturing Industry,” Procedia Technology, vol. 12, pp. 323-328, 2014. ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2013.12.493.
     Google Scholar
  29. C. Bidjocka, Conception de bétons légers isolants porteurs. Applications aux pouzzolanes naturelles du Cameroun. Thèse de Doctorat. Institut National des Sciences Appliquées de Lyon, 1990.
     Google Scholar
  30. K. Celik, C. Meral, M. Mancio, K.P. Mehta, P.J.M. Monteiro, “A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash,” Construction and Building Materials, vol. 67, Part A, pp. 14-19, 2014. https://doi.org/10.1016/j.conbuildmat. 2013.11.065.
     Google Scholar
  31. K.M.A. Hossain, “High strength blended cement concrete incorporating volcanic ash: performance at high temperatures,” Cement Concrete Comp., 28, 535–545, 2006.
     Google Scholar
  32. V. Kretova, Hezhev, Tolya, Mataev, Timur, Hezhev, Khasanbi, Vasily, Amelin, Gypsum cement pozzolana composites with application volcanic ash. Procedia Eng.117, 206–210, 2015.
     Google Scholar
  33. R. Kajaste, M. Hurme, “Cement industry greenhouse gas emissions – management options and abatement cost,” J. Clean. Prod., 112, 4041–4052, 2016.
     Google Scholar
  34. J.W. Wilson and Y.C. Ding, A comprehensive report on pozzolanic admixtures, the cement industry, market and economic trend and major companies operating in the far east, with reference to Pagan island., pp 4-33, 2007.
     Google Scholar
  35. Luukkonen, Tero, Abdollahnejad, Zahra, Juho, Yliniemi, Paivo, Kinnunen Illikainen Mirja, “One-part alkali-activated materials: a review,” Cem. Concr. Res., 103,21–34, 2018.
     Google Scholar
  36. Xuan, Dongxing, Poon, Chi, Sun, Zheng, Wei, “Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: a review, resources,” Conserv. Recycl., 136, 238–247, 2018.
     Google Scholar
  37. S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed, “Significance of performance based specifications in the qualification and characterization of blended cement using volcanic ash,” Constr. Build. Mater., 144, 532–540, 2017.
     Google Scholar
  38. A.M. al-Swaidani, S.D. Aliyan, “Effect of adding Scoria as cement replacement on durability-related properties,” International J. Concr. Structures Mater, 9 June (2), 2015.
     Google Scholar
  39. J.G. Fitton and H.M. Dunlop, “The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt,” Earth and Planetary Science Letters, vol. 72, issue 1, Pages 23-38, ISSN 0012-821X, https://doi.org/10.1016/0012-821X(85)90114-1, 1985.
     Google Scholar
  40. A.N. Halliday, J.P. Davidson, P. Holden, C. Dewolf, D.C. Lee, J.G. Fitton, “Trace element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon Line,” Nature, 347 (6293):523–528, 1990.
     Google Scholar
  41. F.T. Aka, T. Yokohama, M. Kusakabe, E. Nakamura, G. Tanyileke, B. Ateba, V. Ngako, J.M. Nnange, J.V. Hell, “U-series dating of Lake Nyos maar basalts, Cameroon (West Africa); implications for potential hazards on the Lake Nyos dam,” J Volcanol Geotherm Res, 176:212–224, 2008.
     Google Scholar
  42. P. Kamgang, G. Chazot, E. Njonfang, N.N.B Tchuimegnie, F.M. Tchoua, “Mantle sources and magma evolution beneath the Cameroon Volcanic Line: Geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon),” Gondwana Research, vol. 24, Issue 2, 2013, pp. 727-741, 2013. ISSN 1342-937X, https://doi.org/10.1016/j.gr.2012.11.009.
     Google Scholar
  43. A.N.E. Asaah, T. Yokoyama, F.T. Aka, H. Iwamori, T. Kuritani, T. Usui, D. Gountie, J. Tamen, T. Hasegawa, E.M. Fozing, M.J. Wirmvem, A.L. Nche, “Major/trace elements and Sr–Nd–Pb isotope systematics of lavas from lakes Barombi Mbo and Barombi Koto in the Kumba graben,” Cameroon Volcanic Line Constr Petrog J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2019.103675, 2020.
     Google Scholar
  44. B. Tima, Le développement durable en entreprise. Introduction, 2012.
     Google Scholar
  45. ISO 10725: (2000). Plans et procédures d'échantillonnage pour acceptation pour le contrôle de matériaux en vrac.
     Google Scholar
  46. EN 196-1 Août 1995: Norme européenne, «méthodes d’essais des ciments, partie 3».
     Google Scholar
  47. ISO 679 (2009). Ciments-Méthodes d'essai-Détermination de la résistance mécanique.
     Google Scholar
  48. NF P 18-588, “Granulats, Stabilité dimensionelle en milieu alcalin. Essai accéléré sur mortier MICROBAR”, AFNOR, Paris, Déc 1991.
     Google Scholar
  49. NF EN 196-6 (avril 2012) Méthodes d'essai des ciments – Partie 6: détermination de la finesse (Indice de classement : P15-471-6).
     Google Scholar
  50. NF EN 196-5 (avril 2013) Méthodes d'essais des ciments – Partie 5: essai de pouzzolanicité des ciments pouzzolaniques (Indice de classement : P15-471-5).
     Google Scholar
  51. Fecteau, 1997. Grille de détermination de l’importance absolue des impacts. Paris. 129 p.
     Google Scholar
  52. ASTM., (2015). American Society for Testing and Materials. Ciments, chaux, plâtres. Cement, Lime, Gypsum. Bâtiment et génie civil VOLUME 04–01. 830 p.
     Google Scholar
  53. G. Kakali, T. Perraki, S. Tsivilis, E. Badogiannis, “Thermal treatment of kaolin: the effect of mineralogiy on the pozzolanic activity,” Applied clay science, 20, issue 1-2, pp. 73-80, 2001.
     Google Scholar
  54. R. Largent Estimation de l’activité pouzzolanique. Recherche d’un essai. Bull. liaison labo. P. et ch., n°93, janvier-février 1978, p. 61-65, 1978.
     Google Scholar
  55. F. Massazza, Properties and applications of natural pozzolanas, in: Bensted J, Barnes P (Eds.), Structure and Performance of Cements, 2nd edition, Spon Press, London, pp. 326–352, 2001.
     Google Scholar
  56. T. Martaud, Évaluation environnementale de la production de granulats en exploitation de carrières - Indicateurs, Modèles et Outils. Géologie appliquée. Université d’Orléans, 2008. Français. : 219p., 2008.
     Google Scholar
  57. Norme Camerounaise Sur Les Ciments. Désignation NC 234:2009-06.
     Google Scholar


Most read articles by the same author(s)