##plugins.themes.bootstrap3.article.main##

Wastewater Treatment Plants (WWTPs) on the planet, daily processing billions of tons of wastewater and producing masses of sludge accordingly, act like artificial biogeochemical cycles themselves by producing material flow and creating microbial life cycles that normally do not exist in nature, a case with unknown cumulative long-term effects on the planet and human organisms. This study identifies WWTPs as a general Earth system problem with sub-problems to be challenged by new engineering techniques with an integrated natural science perspective. In order to challenge these problems, first the overall ecological role of WWTPs is clarified. Second a literature review (a) on the contents of the end products of wastewater engineering (b) on the effects of utilization of sewage sludge as fertilizer (c) on the utilization of sewage sludge as cement and construction material is provided. Current legal and practical situation in Turkey and EU is very briefly compared. Then, the design of the circular economic eco-bog system, which is a conceptual model of a new technology both to challenge these problems as much as possible and to act as an integrated industrial production system, is introduced. The new system is based on an innovative algaculture and ecomimicry of the evolution of wetland ecosystems from lake to terrestrial ecosystems. Algaculture and artificial bog components of the system use desulphurised fuel gases from both biogas component of the system and also concrete production component of the system. Desulphurization is to avoid H2S production in eco-bog unlike the natural bog ecosystems, and produce sulphurous fertilizers, and produce bog ecosystem services. Since, the fuel gas utilization from the biogas produced by archaebacteria is already net carbon zero, all system makes negative emission, namely sequestration. The CO2 to be released is fixed as biocarbon in algae in agriculture component, and then as organic and inorganic carbon after the sedimentation during accelerated evolution of eco-bog by creating hypoxia, acidification, and eutrophication conditions in artificial lake ecosystem. This sedimentation is mixed with sewage sludge ash for production of cement to have a higher quality concrete. Microbial biofertilizer and organic fertilizers are also produced from the algaculture component of the system, and industrial lichen from bog ecosystem. The system is inspired from lake death mechanisms of the nature, rather than lake health mechanisms in order to capture carbon and nitrogen in lithosphere and biosphere rather than releasing them to atmosphere as fuel gases, imitating natural bogs which are important carbon reservoirs. Finally, a new theorization of the issue is postulated as a way forward to reach SDGs, circular economy and bioeconomy targets of EU Green Deal as well as targets of RIO Conventions and Paris Agreement, not based on water quality arguments but based on mass and energy arguments, as well as arguments for ecologic health and preventive medical treatment for public health, and arguments for integrated industrial production in a holistic manner.

References

  1. Elser J, Bennett E. Phosphorus cycle: A broken biogeochemical cycle. Nature. 2011 Oct 5;478(7367):29-31. doi: 10.1038/478029a. PMID: 21979027.
     Google Scholar
  2. Lahiri, Susmita & Ghosh, Debarati & Sarkar, Disan. (2018). Biogeochemical Cycling Bacteria and Nutrient Dynamics in Waste Stabilization Pond System. 10.1007/978-981-10-7248-2_2.
     Google Scholar
  3. Slocombe Stephen P., Zúñiga-Burgos Tatiana, Chu Lili, Wood Nicola J., Camargo-Valero Miller Alonso, Baker Alison. (2020). Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. 10.3389/fpls.2020.00982.
     Google Scholar
  4. Saunders, A., Albertsen, M., Vollertsen, J. et al. The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10, 11–20 (2016). https://doi.org/10.1038/ismej.2015.117.
     Google Scholar
  5. Wieland Ulrich. (2003) Water use and waste water treatment in the EU and in Candidate Countries, ISSN 1562-3106, Catalogue number: KS-NQ-03-013-EN-N, Available at: https://ec.europa.eu/eurostat/documents/3433488/5537328/KS-NQ-03-013-EN.PDF/4dada14f-aceb-4a0b-8a6e-9531b4e01c78?version=1.0.
     Google Scholar
  6. Encyclopedia Britannica, https://www.britannica.com/technology/wastewater-treatment, Access: 8th of May 2021.
     Google Scholar
  7. World Health Organization (2006). Guidelines for the safe use of wastewater, excreta, and greywater. World Health Organization. p. 31. ISBN 9241546859. OCLC 71253096.
     Google Scholar
  8. Andersson, K., Rosemarin, A., Lamizana, B., Kvarnström, E., McConville, J., Seidu, R., Dickin, S. and Trimmer, C. (2016). Sanitation, Wastewater Management and Sustainability: from Waste Disposal to Resource Recovery Archived 2017-06-01 at the Wayback Machine. Nairobi and Stockholm: United Nations Environment Programme and Stockholm Environment Institute. ISBN 978-92-807-3488-1, p. 56.
     Google Scholar
  9. Ellen Z. Harrison, Summer Rayne Oakes, Investigation of Alleged Health Incidents Associated with Land Application of Sewage Sludges Summer, NEW SOLUTIONS, Vol. 12(4) 387-408, 2002.
     Google Scholar
  10. Jansen, F., Dorny, P., Gabriël, S. et al. The survival and dispersal of Taenia eggs in the environment: what are the implications for transmission? A systematic review. Parasites Vectors 14, 88 (2021). https://doi.org/10.1186/s13071-021-04589-6.
     Google Scholar
  11. Havelaar, A.H., Furuse, K. and Hogeboom, W.M. (1986), Bacteriophages and indicator bacteria in human and animal faeces. Journal of Applied Bacteriology, 60: 255-262. https://doi.org/10.1111/j.1365-2672.1986.tb01081.x.
     Google Scholar
  12. S. Lahrich, F. Laghrib, A. Farahi, M. Bakasse, S. Saqrane, M.A. El Mhammedi. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. Science of The Total Environment, Volume 751, 2021, 142325, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.142325.
     Google Scholar
  13. Naddeo, Vincenzo; Liu, Haizhou (2020). "Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): what is its fate in urban water cycle and how can the water research community respond?". Environmental Science: Water Research & Technology. 6 (5): 1213–1216. doi:10.1039/D0EW90015J.
     Google Scholar
  14. Andrew F. Brouwer, Joseph N. S. Eisenberg, Connor D. Pomeroy, Lester M. Shulman, Musa Hindiyeh, Yossi Manor, Itamar Grotto, James S. Koopman, and Marisa C. Eisenberg. (2018). Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. PNAS November 6, 2018, 115 (45) E10625-E10633; https://doi.org/10.1073/pnas.1808798115.
     Google Scholar
  15. World Health Organization Regional Office for the Eastern Mediterranean (2004). Integrated Guide to Sanitary Parasitology. World Health Organization. p. 1. ISBN 92-9021-386-8. Available at:
     Google Scholar
  16. Belhaj D, Elloumi N, Jerbi B, Zouari M, Abdallah FB, Ayadi H, Kallel M. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ Sci Pollut Res Int. 2016 Oct;23(20):20168-20177. doi: 10.1007/s11356-016-7193-0. Epub 2016 Jul 19. PMID: 27430654.
     Google Scholar
  17. Singh RP, Agrawal M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere. 2007 May;67(11):2229-40. doi: 10.1016/j.chemosphere.2006.12.019. Epub 2007 Feb 7. PMID: 17289111.
     Google Scholar
  18. Carlton-Smith, 1987. C.H. Carlton-Smith Effects of Metals in Sludge-Treated Soils on Crops. WRc Environment TR251, WRc Medmenham, Marlow (1987).
     Google Scholar
  19. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009 Jan;35(1):142-56. doi: 10.1016/j.envint.2008.06.009. Epub 2008 Aug 8. PMID: 18691760.
     Google Scholar
  20. Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008;28(2):347-58. doi: 10.1016/j.wasman.2006.12.010. Epub 2007 Feb 22. PMID: 17320368.
     Google Scholar
  21. Sigua, Gilbert & Adjei, Martin & Rechcigl, J.E. (2005). Cumulative and Residual Effects of Repeated Sewage Sludge Applications: Forage Productivity and Soil Quality Implications in South Florida, USA (9 pp). Environmental science and pollution research international. 12. 80-8. 10.1065/espr2004.10.220.
     Google Scholar
  22. Aparicio Ruiz, Pablo & Schiano-Phan, Rosa & Salmerón, José. (2018). Climatic applicability of downdraught evaporative cooling in the United States of America. Building and Environment. 136. 10.1016/j.buildenv.2018.03.039.
     Google Scholar
  23. Sigua, G., Myer, R., Coleman, S., Mackowiak, C., Adjei, M., Chase, C., & Albano, J. (2011). Regional Distribution of Soil Phosphorus Across Congregation-Grazing Zones of Forage-Based Pastures with Cow-Calf Operations in Florida. Journal of Environmental Protection, 02, 408-417.
     Google Scholar
  24. Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015 Jun;40:44-52. doi: 10.1016/j.wasman.2015.01.027. Epub 2015 Feb 21. Erratum in: Waste Manag. 2015 Oct;44():227. PMID: 25708406.
     Google Scholar
  25. Xianke Lin, Sichang Li, Zebin Wei, Yangmei Chen, Liang Hei, Qi-Tang Wu. Indirect application of sludge for recycling in agriculture to minimize heavy metal contamination of soil. Resources, Conservation and Recycling, Volume 166, 2021, 105358, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2020.105358.
     Google Scholar
  26. Elisabet Marti, Victoria Osorio, Marta Llorca, Lidia Paredes, Meritxell Gros, Chapter Five - Environmental risks of sewage sludge reuse in agriculture, Editor(s): Paola Verlicchi, Advances in Chemical Pollution, Environmental Management and Protection, Elsevier, Volume 6, 2020, Pages 137-180, ISSN 2468-9289, ISBN 9780323856843, https://doi.org/10.1016/bs.apmp.2020.07.003.
     Google Scholar
  27. Li, Chengcheng & Cabassud, C. & Guigui, Christelle. (2014). Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and water treatment. 55. 10.1080/19443994.2014.926839.
     Google Scholar
  28. Kucukunsal, S. and Icgen, B. (2020), Removal of antibiotic resistance genes in various water resources recovery facilities. Water Environ Res, 92: 911-921. https://doi.org/10.1002/wer.1286.
     Google Scholar
  29. Shengnan Li, Chaofan Zhang, Fengxiang Li, Tao Hua, Qixing Zhou, Shih-Hsin Ho, Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review, Journal of Hazardous Materials, Volume 411, 2021, 125148, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2021.125148.
     Google Scholar
  30. Rayane Kunert Langbehn, Camila Michels, Hugo Moreira Soares, Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies, Environmental Pollution, Volume 275, 2021, 116603, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2021.116603.
     Google Scholar
  31. Weiyi Liu, Jinlan Zhang, Hang Liu, Xiaonan Guo, Xiyue Zhang, Xiaolong Yao, Zhiguo Cao, Tingting Zhang. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms, Environment International. Volume 146. 2021. 106277. ISSN 0160-4120. https://doi.org/10.1016/j.envint.2020.106277.
     Google Scholar
  32. Satinder K. Brar, Mausam Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – Evidence and impacts, Waste Management, Volume 30, Issue 3, 2010, Pages 504-520, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2009.10.012.
     Google Scholar
  33. Chukwuemeka O. Nnaji, Jaison Jeevanandam, Yen S. Chan, Michael K. Danquah, Sharadwata Pan, Ahmed Barhoum. Chapter 6 - Engineered nanomaterials for wastewater treatment: current and future trends. Editor(s): Ahmed Barhoum, Abdel Salam Hamdy Makhlouf. In Micro and Nano Technologies, Fundamentals of Nanoparticles, Elsevier, 2018. Pages 129-168. ISBN 9780323512558, https://doi.org/10.1016/B978-0-323-51255-8.00006-9.
     Google Scholar
  34. Timothy L. Coggan, Damien Moodie, Adam Kolobaric, Drew Szabo, Jeff Shimeta, Nicholas D. Crosbie, Elliot Lee, Milena Fernandes, Bradley O. Clarke. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon, Volume 5, Issue 8. 2019. e02316. ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2019.e02316.
     Google Scholar
  35. Shigei, Makoto & Ahren, Lutz & Hazaymeh, Ayat & Dalahmeh, Sahar. (2020). Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan. Science of The Total Environment. 716. 137057. 10.1016/j.scitotenv.2020.137057.
     Google Scholar
  36. Elizabeth F. Davis, Susan L. Klosterhaus, Heather M. Stapleton. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. Environment International, Volume 40, 2012, Pages 1-7, ISSN 0160-4120, https://doi.org/10.1016/j.envint.2011.11.008.
     Google Scholar
  37. Kim, Un-Jung; Oh, Jung Keun; Kannan, Kurunthachalam (2017): Occurrence, Removal, and Environmental Emission of Organophosphate Flame Retardants/Plasticizers in a Wastewater Treatment Plant in New York State. ACS Publications. Collection. https://doi.org/10.1021/acs.est.7b02035.
     Google Scholar
  38. Ike van der Veen, Jacob de Boer. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, Volume 88, Issue 10, 2012, Pages 1119-1153, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2012.03.067.
     Google Scholar
  39. García-Agustín, Flors, Cerezo, et al. Aquifer Contamination by Nitrogen After Sewage Sludge Fertilization. Bull Environ Contam Toxicol 72, 344–351 (2004). https://doi.org/10.1007/s00128-003-8984-9.
     Google Scholar
  40. Hale Stephen S., Cicchetti Giancarlo, Deacutis Christopher F. 2016. Eutrophication and Hypoxia Diminish Ecosystem Functions of Benthic Communities in a New England Estuary.Frontiers in Marine Science, Volume 3, p 249, ISSN=2296-7745, doi 10.3389/fmars.2016.00249.
     Google Scholar
  41. Soledad González-Rubio, Ana Ballesteros-Gómez, Alexandros G. Asimakopoulos, Veerle L.B. Jaspers. A review on contaminants of emerging concern in European raptors (2002−2020). Science of The Total Environment, Volume 760, 2021, 143337, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.143337.
     Google Scholar
  42. Gale et al. 2003, Pathogens in biosolids. Microbiological Risk Assessment. UKWIR, London, UK. ISBN: 1-84057-294-9
     Google Scholar
  43. Tanner et al 2008, Estimated Occupational Risk from Bioaerosols Generated during Land Application of Class B Biosolids, J Environ Qual.2008; 37: 2311-2321.
     Google Scholar
  44. Smith SC (2008), The implications for human health and the environment of recycling biosolids on agricultural land. Imperial College London Centre for Environmental Control and Waste Management. Available at: http:/www3.imperial.ac.uk/ewre.
     Google Scholar
  45. EU 2008, Environmental, economic and social impacts of the use of sewage sludge on land. Available at: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf.
     Google Scholar
  46. Hudcová H., Vymazal J., Rozkošný M. (2019): Present restrictions of sewage sludge application in agriculture within the European Union. Soil & Water Res., 14: 104-120.
     Google Scholar
  47. Collivignarelli, Maria & Abbà, Alessandro & Frattarola, Andrea & Carnevale Miino, Marco & Padovani, Sergio & Katsoyiannis, Ioannis & Torretta, Vincenzo. (2019). Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability. 11. 6015. 10.3390/su11216015.
     Google Scholar
  48. European Commission. 2001. Disposal and Recycling Routes for Sewage Sludge Part 1—Sludge Use Acceptance, Report. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal1.pdf (accessed on 10 May 2021).
     Google Scholar
  49. Đurđević, D.; Trstenjak, M.; Hulenić, I. Sewage Sludge Thermal Treatment Technology Selection by Utilizing the Analytical Hierarchy Process. Water 2020, 12, 1255. https://doi.org/10.3390/w12051255.
     Google Scholar
  50. Seyedeh Fatemeh Mohsenpour, Sebastian Hennige, Nicholas Willoughby, Adebayo Adeloye, Tony Gutierrez, Integrating micro-algae into wastewater treatment: A review, Science of The Total Environment, Volume 752, 2021, 142168, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.142168.
     Google Scholar
  51. Maozhe Chen, Denise Blanc, Mathieu Gautier, Jacques Mehu, Rémy Gourdon, Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction, Waste Management, Volume 33, Issue 5, 2013, Pages 1268-1275, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2013.01.004.
     Google Scholar
  52. Primož Pavšič, Ana Mladenovič, Alenka Mauko, Sabina Kramar, Matej Dolenec, Ernest Vončina, Katarina Pavšič Vrtač, Peter Bukovec, Sewage sludge/biomass ash based products for sustainable construction, Journal of Cleaner Production, Volume 67, 2014, Pages 117-124, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2013.12.034.
     Google Scholar
  53. Bui Le Anh Tuan, Chao-Lung Hwang, Kae-Long Lin, Yuan-Yuan Chen, Mung-Pei Young, Development of lightweight aggregate from sewage sludge and waste glass powder for concrete, Construction and Building Materials, Volume 47, 2013, Pages 334-339, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2013.05.039.
     Google Scholar
  54. Kretschmer, N.; Ribbe, L. und Gaese, H. (2002). Wastewater Reuse for Agriculture. echnology Resource Management & Development - Scientific Contributions for Sustainable Development, Vol. 2.
     Google Scholar
  55. Varshney, Prachi & Beardall, John & Bhattacharya, Sankar & Wangikar, Pramod. (2018). Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research. 30. 28-37.
     Google Scholar
  56. Brown, L M. Uptake of carbon dioxide from flue gas by microalgae. United Kingdom: N. p., 1996. Web. doi:10.1016/0196-8904(95)00347-9.
     Google Scholar
  57. Hauck JT, Olson GJ, Scierka SJ, Perry MB, Ataai MM (1996) Effects of simulated flue gas on growth of microalgae. Abstracts of Papers. American Chemical Society, 212.
     Google Scholar
  58. Doucha, Jiri & Straka, František & Lívanský, Karel. (2005). Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology. 17. 403-412. 10.1007/s10811-005-8701-7.
     Google Scholar
  59. Sjors van Iersel, "ALGAE-BASED BIOFUELS: A Review of Challenges and Opportunities for Developing Countries.", Review of FAO, May 2009, Retrieved 4 May 2021, from http://www.fao.org/fileadmin/templates/aquaticbiofuels/docs/0905_FAO_Review_Paper_on_Algae-based_Biofuels.pdf, Access: 04/05/2020.
     Google Scholar
  60. Chisti, Y. (2007). "Biodiesel from microalgae." Biotechnol. Adv. 25(3): 294-306.
     Google Scholar
  61. Camia A., Robert N., Jonsson R., Pilli R., García-Condado S., López-Lozano R., van der Velde M., Ronzon T., Gurría P., M’Barek R., Tamosiunas S., Fiore G., Araujo R., Hoepffner N., Marelli L., Giuntoli J., Biomass production, supply, uses and flows in the European Union. First results from an integrated assessment, EUR 28993 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN978-92-79-77237-5, doi:10.2760/539520, JRC109869.
     Google Scholar
  62. Jr, J. (2014). Complete Guide for Growing Plants Hydroponically. p/50. 10.1201/b16482.
     Google Scholar
  63. El-Qelish, M., Chatterjee, P., Dessì, P. et al. Bio-hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-continuous Reactor Operation. Waste Biomass Valor 11, 4225–4234 (2020). https://doi.org/10.1007/s12649-019-00743-5.
     Google Scholar
  64. Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MWW. Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-2015. doi: 10.1099/ijs.0.017731-0. Epub 2009 Oct 2. PMID: 19801388.
     Google Scholar
  65. Svetlichnyi, V. A.; Svetlichnaya, T. P.; Chernykh, N. A.; Zavarzin, G. A. (1990). "Anaerocellum Thermophilum Gen. Nov Sp. Nov. an Extremely Thermophilic Cellulolytic Eubacterium Isolated from Hot-Springs in the Valley of Geysers". Mikrobiologiâ. 59: 598–604.
     Google Scholar
  66. Yasemin D. Yilmazel, David Johnston, Metin Duran, Hyperthermophilic hydrogen production from wastewater biosolids by Caldicellulosiruptor bescii, International Journal of Hydrogen Energy, Volume 40, Issue 36, 2015, Pages 12177-12186, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2015.06.140.
     Google Scholar
  67. Logan B. Generating electricity from wastewater treatment. Water Environ Res. 2005 May-Jun;77(3):211. PMID: 15969285.
     Google Scholar
  68. Vymazal J., Brix H., Cooper P. F., Green M. B., Haberl R. (1998). Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers. Leiden, Netherlands.).
     Google Scholar
  69. The IPBES Core Glossary, Available at: https://ipbes.net/glossary/living-harmony-nature, Accessed: 14.05.2021.
     Google Scholar
  70. Díaz S. et al, The IPBES Conceptual Framework — connecting nature and people, Current Opinion in Environmental Sustainability, Volume 14, 2015, Pages 1-16, ISSN 1877-3435, https://doi.org/10.1016/j.cosust.2014.11.002.
     Google Scholar