##plugins.themes.bootstrap3.article.main##

Management of groundwater require knowing their qualities and hydrogeochemical processes whereby these waters acquire their mineralization. The population of Mbakaou in Adamawa Plateau consumes groundwater from a doubtful quality water supply structures (wells, boreholes and catchments). This study was carried out to highlight groundwater quality and processes that govern water mineralization. So, to achieve this, 11 water samples were analyzed (1 rain water, 1 well, 3 springs and 6 boreholes). After analyzing the samples and comparing the obtained values to World Health Organization (WHO) standards, multivariate statistical analysis including Principal Component Analysis (PCA) were applied. Results show that these waters samples are fresh, generally of good quality compared to WHO standards and weakly mineralized (35 to 247.9 mg/l), due to the short residence time. Calcium and magnesium bicarbonate facies is the main water type. Nitrates are the most common pollutants and reveal high vulnerability of saprolite aquifer than fractured aquifer. The groundwater mineralization is influenced by precipitation, base ion exchange process, anthropogenic activities and water-rock interaction through silicate weathering. The PCA analysis yielded three factors that explained 89.33 % of the total variance. Factor 1 (62.60 %), factor 2 (15.54 %) and factor 3 (11.19 %) made respectively the difference between water samples influenced by precipitation or water rock interaction from those influenced by both water-rock interaction with precipitation or anthropogenic activities and those for water rock interaction with ion exchange process.

References

  1. M. Kumar, K. Kumari, K.U. Singh, A.L. Ramanathan, Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ. Geol., vol. 57, pp. 873–884. 2009.
     Google Scholar
  2. E.D. Sunkari, M.S. Zango, H.M. Korboe, Comparative analysis of fluoride concentrations in groundwaters in northern and southern Ghana: implications for the contaminant sources. Earth Syst. Environ., vol. 1 no. 2, pp. 103–117, 2018.
     Google Scholar
  3. S.M. Yidana, B. Banoeng-Yakubo, T.M. Akabzaa, Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, vol. 58 no. 2, pp. 220–234, 2010.
     Google Scholar
  4. V. Cloutier, R. Lefebvre, M.M. Savard, E. Bourque, R. Therrien, Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeology Journal, vol. 14 pp. 573–590, 2006.
     Google Scholar
  5. V. Cloutier, R. Lefebvre, R. Therrien, M.M. Savard, Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, vol. 353, pp. 294 – 313, 2008.
     Google Scholar
  6. M. Kumar, A.L. Ramanathan, M.S. Rao, B. Kumar, Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J Environ Geol., vol. 50, pp. 1025–1039, 2006.
     Google Scholar
  7. B.T. Kamtchueng, W.Y. Fantong, M.J. Wirmvem, R.E. Tiodjio, A.F. Takounjou, J.R. Ndam Ngoupayou, M. Kusakabe, O. Jing Zhang Takeshi, G. Tanyileke, J.V. Hell, A. Ueda, Hydrogeochemistry and quality of surface water and groundwater in the vicinity of lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization. Environ. Monit. Assess., vol. 188, pp. 1–24, 2016.
     Google Scholar
  8. K.S. Voudouris, N.J. Lambrakis, G. Papatheothourou and P. Daskalaki, An Application of Factor Analysis for the Study of the Hydrogeological Conditions in Plio-Pieistocene Aquifers of NW Achaia (NW Peloponnesus, Greece). Mathematical Geology, vol. 29, pp. 43-59, 1997.
     Google Scholar
  9. M.S. Aboubacar, L. Xueyu, K. Sidi, Assessing groundwater mineralization process, quality, and isotopic recharge origin in the Sahel Region in Africa. Water, 11, 789, 2019.
     Google Scholar
  10. E.M.C. Ana, A.R.L. José, A.M.C. Diego, T.V. José, D.L.B. Josue, and M.R. Janete, Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality, Using Multivariate Statistical Approaches and Water Quality Index in a Wastewater Irrigated Region. Water, vol. 11, pp. 1702, 2019.
     Google Scholar
  11. A. Tonang Zebaze, Influence de la lithologie et des structures géologiques sur la dynamique et la qualité des eaux des aquifères de socle dans la région de Mbakaou et ses environs. M.S. Thesis, Department of Earth Science, Univ. Dschang, Cameroon, 2009.
     Google Scholar
  12. S.F. Toteu, W.R. Van Schmus, J. Penaye, A. Michard, New U-Pb, and Sm-Nd data from North-Central Cameroun and its bearing on the pre-Pan-African history of Central Africa. Precambrian Research, vol. 108, pp. 45-73, 2001.
     Google Scholar
  13. R. Tchameni, A. Pouclet, J. Penaye, A.A. Ganwa, S.F. Toteu, Petrography and geochemistry of the Ngaoundere Pan-African granitoïds in Central North Cameroun : Implication for thier sources and geological setting. Journal of African Earth Science, vol. 44, pp. 511-529, 2006.
     Google Scholar
  14. V. Ngako, P. Affaton, J.M. Nnange, T. Njanko, Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. Journal of African Earth Sciences, vol. 36, pp. 207–214, 2003.
     Google Scholar
  15. M. Lasserre, Carte géologique de reconnaissance à l’échelle 1/500 000, territoire du Cameroun, Ngaoundéré-Est, Direction des Mines et de la Géologie, Yaoundé Cameroun, 1961.
     Google Scholar
  16. J.P. Nzenti, B. Kapajika, T.L. Warnen Ruanonza, Synkynematic emplacement of granitoid, in Pan-African shear zone in central Camroon. Journal of African Earth Science, vol. 45, pp. 74-86, 2006.
     Google Scholar
  17. T. Njanko, A. Nedelec, P. Affaton, Synkinematic high-K calco-alcaline plutons associated to the Pan-African central Cameroon Shear zone (W–Tibati area): petrology and geodynamic significance. Journal of African Earth Sciences, vol. 44, pp. 494-510, 2006.
     Google Scholar
  18. Souaibou, J. Mvondo Ondoua, A. Elimbi, J.E. Ekodeck, B.V. Kamgang Kabeyene, Caractéristiques morphologiques et géochimiques des manteaux d’altération développés sur granitoïdes dans la région de l’Adamaoua (Cameroun). European Scientific Journal, vol. 11, no. 15, pp. 187 – 204, 2015.
     Google Scholar
  19. T.W. Tchaptchet, P. Tematio, T.N. Guimapi, E. Happi, I. Tiomo, N.M. Momo, Morphological, mineral and geochemical characterization of soil profiles in Meïganga as tools for rock weathering intensity and trend evaluation and residual ore deposit prospection in the mineralized domain of central Cameroon. Geological society of London, vol. 22 pp. 1-25, 2020.
     Google Scholar
  20. A. Njueya Kopa, Apport des méthodes géophysiques et géostatistiques à la caractérisation électrique et structurale des aquifères du secteur Centre de la Chaîne Panafricaine d’Afrique Centrale au Cameroun : implication dans la réduction du taux d’échec des forages. Thèse de Doctorat/Ph.D, Département Sciences de la Terre, Université de Dschang, Cameroun, 2018.
     Google Scholar
  21. A. Tonang Zebaze, A. Njueya Kopa, M. Kwekam, E. Temgoua, Assessment of hydrogeoelectrical characteristics of crystalline aquifers and groundwaters quality in Adamawa plateau: case of Mbakaou (Adamawa – Cameroon). Environmental and Earth Sciences Reseach Journal, vol. 7 no. 4, pp. 153-163, 2020.
     Google Scholar
  22. World Health Organization (WHO), Guidelines for Drinking-Water Quality, WHO Press, 20 Avenue Appia, 1211 Geneva 27, Switzerland, ED-3, pp. 26–33, 2006.
     Google Scholar
  23. D.K. Chadha, A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, vol. 7, no. 5, pp. 431–439, 1999.
     Google Scholar
  24. S. Kiymaz and U. Karadavut, Application of multivariate statistical analysis in the assessment of surface water quality in Seyfe lake, Turkey. Journal of Agricultural Sciences, vol. 20, pp. 152- 163, 2014.
     Google Scholar
  25. E.D. Sunkari, M. Abu, P.S. Bayowobie, U.E. Dokuz, Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: Implication for domestic and irrigation purposes. Groundwater for Sustainable Development, vol. 8, pp. 501-511, 2019.
     Google Scholar
  26. A. Nono, E. Temgoua, J.D.H. Likeng, T.J.P. Djoukouo, Influence de la nature lithologique et des structures géologiques sur la qualité des eaux souterraines sur le versant Nord des Monts Bambouto (Hautes terres de l’Ouest-Cameroun): cas du village Balepo et de ses environs. Africa Geoscience Review, pp. 149-162, 2008.
     Google Scholar
  27. A. Nono, J.D.H. Likeng, H. Wabo, Y.G. Tabue, S. Biaya, Influence de la nature lithologique et des structures géologiques sur la qualité et la dynamique des eaux souterraines et des sources dans les hauts plateaux de l’Ouest-Cameroun. International Journal of Biological and Chemical Sciences, vol. 3, no. 2, pp. 218-239, 2009.
     Google Scholar
  28. A.A. Ako, J. Shimada, T. Hosono, M. Kagabu, A.R. Ayuk, G.E. Nkeng, G.E.T. Eyong, A.L.F. Takounjou, Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environ. Geochem. Health vol. 34, no. 5, pp. 615–639, 2012.
     Google Scholar
  29. A.M. Piper, A graphic procedure in the geochemical interpretation of water analysis. Trans. Am. Geophys. Un. Papers, Hydrol., pp. 914-929, 1944.
     Google Scholar
  30. B. Babita, M. Nandita, H.K. Sahoo, Interpretation of groundwater chemistry using Piper and Chadha’s diagrams: a comparative study from Balangir and Puintala blocks of Blagir district, Odisha, India. Journal of Emerging Technologies and Innovative Research, pp. 35-39, 2019.
     Google Scholar
  31. P. Ravikumar and R.K. Somashekar, Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Appl. Water Sci., vol. 7, pp. 745 -755, 2017.
     Google Scholar
  32. H. Schoeller, Geochemistry of groundwater. In: Groundwater studies- An International Guide for Research and Practice. UNESCO, Paris, Ch., vol. 15, pp. 1-18, 1977.
     Google Scholar
  33. S. Gupta, P.S. Dandele, M.B. Verma, P.B. Maithani, Geochemical Assessment of Groundwater around Macherla-Karempudi Area, Guntur District, Andhra Pradesh. Journal Geological Society of India, vol. 73, pp. 202-212, 2009.
     Google Scholar
  34. R.J. Gibbs, Mechanisms controlling worlds water chemistry. Sc., vol. 170, pp. 1088-1090, 1970.
     Google Scholar
  35. Y. Jiang, Y. Wu, C. Groves, D. Yuan, P. Kambesis, Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J. Contam. Hydrol., vol. 109, pp. 49–61, 2009.
     Google Scholar
  36. M. Kumar, K. Kumari, A. Ramanathan, R. Saxena, A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab. India J Environ Geol., vol. 53, pp. 553–574, 2007.
     Google Scholar


Most read articles by the same author(s)