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I. INTRODUCTION 
Digital Elevation Models (DEMs) are an important input 

that influences a large number of applications using 
topographic information. These applications include 
hydrological modelling, geomorphological, agricultural, soil 
sciences, glaciological, climate studies, forestry, urban, 
infrastructure planning, disaster risk monitoring and 
management and environment-related research works. A 
DEM is a 3D representation of the continuous earth's surface 
depicting its elevation profile or height variations. It 
possesses the latitude, longitude and elevation information in 
a given coordinate system for representation of the earth’s 

surface in a gridded raster format or a vector Triangulated 
Irregular Network (TIN) form [1]. The synonymous terms 
used very often to denote an elevation model are DTM 
(Digital Terrain Model) and DSM (Digital Surface Model). 
DEM is the most widely accepted and used term in regards to 
an elevation model. The DSM represents the top-reflective 
surface of the earth and its objects like buildings, trees, or 
vegetation while the DTM is termed as a bare earth elevation 
model excluding any building or tree canopy height. [2]. 
Several traditional and advancing, remote sensing 
technologies are employed for the generation of DEM in 
varying terrains with the availability of different types of 
sensor data. The available sensors provide elevation 
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ABSTRACT  

The Digital Elevation Models (DEMs) are a key and primary input to a 
large number of modelling processes such as disaster risk monitoring, 
flood modelling, hydrology, geology, geomorphology, climatology, and 
environmental study applications. The DEM serves as an important source 
of topographic information representing the continuous surface of the 
earth in 3 dimensions with x, y and z coordinates of any point in a grided 
raster form or a vector TIN form. This study is based on developing a new 
method using the universal approximation capability of neural networks 
for the fusion and improvement of L-band and X-band SAR (Synthetic 
Aperture Radar) DEMs in the complex terrain of Assam and Meghalaya 
states of the Indian geographic region using the DEM fusion technique. 
The high-spatial-resolution ALOS PALSAR RTC HR 12.5 m DEM 
products are used in a fusion framework designed with neural network 
models. The network adaptively learns the terrain information to produce 
fused DEM products. The neural network models generate the relationship 
between the input elevation information from ALOS PALSAR DEMs and 
precise reference elevation from ICESat-2 spaceborne altimetry as target 
data. The training and testing data samples are prepared and filtered by 
checking the correct range of elevation from the toposheets of this region. 
Different models are used to separately train for the relatively plain valley 
portion of the Assam region and mountainous portions of the highland 
Shillong plateau. The obtained fused DEMs from the developed neural net 
structure are assessed for their quality and accuracy by estimating the 
RMSE parameter. The fused DEM attains an RMSE value of 7 meters for 
the complete region which is a significant improvement over the input 
DEM RMSE of approximately 11 meters. The plain area points and 
mountainous region points are assessed separately to analyze the 
predictions from neural nets in the two types of terrains observed in this 
study site. Moreover, TanDEM-X 90 m DEM is improved using the neural 
network modeling in the geometric distortions affected areas, which shows 
an improvement of around 33% overall at the study site. The assessment 
of plain and mountainous region points for near-ground points shows an 
improvement of 47% and 55% respectively. The fusion framework 
designed using the neural network models is an effective and efficient 
method for obtaining fused DEMs as well as for the improvement of the 
existing DEMs for complex terrain.  
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information in different ways such as the stereo-images from 
optical sensors, SAR (Synthetic Aperture Radar) image pairs 
from the space-based satellites for SAR Interferometry 
(InSAR or IfSAR) and Radargrammetry, discrete point 
clouds from the LiDAR (Light Detection and Ranging) 
devices which can be placed on spaceborne or terrestrial 
platforms, and a more traditional method is to digitize the 
contour maps. Thus based on the type of available data 
various DEM generation techniques are Photogrammetry [3], 
Radargrammetry [4], Photoclinometry [5], Radarclinometry 
[6], Altimetry or LiDAR [7], [8], and SAR Interferometry 
(InSAR) [9], [10].  

Several global DEMs are available in open access at a high 
spatial resolution for the research community such as the 
SRTM (Shuttle Radar Topography Mission), TanDEM-X, 
ALOS PALSAR (Advanced Land Observing Satellite Phased 
Array L-band type SAR) DEM, ASTER GDEM (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
Global DEM), NASADEM, COPDEM (Copernicus DEM), 
and so on providing elevation information around the globe. 
Any improvement in the existing or generated DEMs will in 
turn produce quality-based outputs from the specific 
applications where DEMs are considered as inputs. This will 
add up to the potential value resulting in the enhancement of 
several modelling and quantifying processes directly 
improving the outputs or products, specifically for an 
engineering project. Further, combining the data from 
multiple sources or sensors, and multi-temporal data in an 
intelligent manner produces better and improved results using 
the capabilities of the Neural Nets. This technique of 
combining the various datasets is known as data fusion [11], 
[12]. DEM assimilation or fusion methods have been studied 
by various researchers and research groups using different 
methods namely, feature-based fusion [13], Kalman Optimal 
Interpolation [13], Sparse Representation [14], and artificial 
neural network (ANN) approaches [15], [16]. Similarly, the 
fusion of DEMs has been mainly focused on Optical-Optical 
datasets [13], Optical-InSAR [15], [17]–[19], InSAR- InSAR 
datasets [20]. Other organizations, space agencies, and 
universities working in this direction have come out with 
improved DEMs using a fusion approach such as the 
NASADEM which is an improvisation of DEM obtained by 
combining data from SRTM, ASTER GDEM, ALOS 
PRISM, NED and Alaska’s DEM available at 30 m 
resolution. It also relies on ICESat (Ice, Cloud and Land 
Elevation Satellite) GLAS LiDAR data for attaining an 
improved geolocation accuracy [21]–[23]. The EarthEnv- 90 
m DEM is obtained by fusion of ASTER GDEM 2 and SRTM 
90 m DEM under NASA’s ErathEnv project [24], [25], and 
MERIT (Multi-Error Removed Improved Terrain) DEMs 
which are available in 90 m resolution is obtained by fusion 
of SRTM (version 2.1) and AW3D-30 m (version 1)  along 
with some other datasets to remove the error from the existing 
DEMs mainly focusing in hydrological modelling [26]–[29]. 

A. Geometric Distortions in SAR images 
One of the major concerns in the generation of DEMs is 

the terrain or topographic effects which produce geometric 
distortions like foreshortening, layover and shadows in the 
SAR images due to its side-looking geometry. These are 
mainly dependent on the radar’s transmitting frequency, the 

shape of the antenna pattern and the viewing geometry of the 
sensor. The geometric distortions occur in SAR images where 
the range to each target changes in accordance with the target 
ground location and its height, due to the surface topography 
[30], [31]. In the side-looking geometry system, the upward 
slopes oriented towards the sensor appear narrower than the 
alike downward slopes. The foreshortening appears in the 
images when the slopes facing the sensor appear distorted and 
compression or thinning of slopes takes place on the face 
oriented towards the radar while an elongation on the other 
side that is not illuminated. These foreslopes appear 
shortened in the radar image which makes the feature as it is 
leaning toward the sensor as they are steeper. If the 
depression angles increase, the SAR geometry makes the 
slope appear progressively decreasing, thus increasing the 
severity of foreshortening. The amount of this effect varies 
according to the incidence angle and the steepness of the 
slope. Layover is the extreme version of foreshortening. The 
top or peak of a feature would appear nearer to the nadir than 
its base. The effect is such that in the radar image slope 
appears as inverted and leaning or laid over. Layover mainly 
occurs when the look angle is less than the angle of slope. 
These geometric distortions are prominent in the 
mountainous terrain and with small incidence angles, hence 
the slope is the crucial factor here. Another effect seen in the 
hilly and mountainous terrain is that of shadow. It’s the region 
in the radar image where the sensor receives no echo from the 
target. This area either appears black or defined sharply 
lacking any information. The shadow is the silence region 
where either that region is not illuminated or echo is not 
received due to any obstacle while imaging the earth's 
surface. It is important to consider and overcome these 
distortions while using SAR-based DEMs. Further, the 
existing global DEMs can be improved through fusion 
techniques for the complex undulating terrains where slope 
effects and geometric distortions are highly prominent to 
obtain better quality DEM. 

A precise reference data which can substitute the 
requirement of ground truth data is provided by the ICESat-2 
(Ice, Cloud and Land Vegetation Satellite) spaceborne 
altimetry mission from NASA launched in September, 2018. 
The ICESat-2 mission provides global coverage with a large 
number of laser footprints serving as reference elevations for 
carrying out such studies. ICESat-2 provides various 
elevation products specific to applications like geolocated 
photon data (ATL03), Land-ice height (ATL06), Sea-ice 
height (ATL07), Land-vegetation height (ATL08) and so on 
[32]. The vertical and horizontal accuracy of ICESat-2 
products is assessed and used as a reference elevation in 
several research works [33]. The accuracy of ICESat-2 in 
providing ground elevation for the Alaska region is validated 
using airborne LiDAR data along with other factors such as 
slope, vegetation cover and vegetation heights [34]. The 
accuracy of the ICESat-2 ATL06 product has also been tested 
successfully in the mountainous region using around 208 
footprints with Continuously Operating Reference System 
(CORS) and UAV datasets [35]. The global coverage of 
ICESat-2 data is widely used in DEM accuracy assessment 
such as for open access InSAR DEMs in parts of the 
Himalayas comparing accuracies of TanDEM-X 90 m and 
ALOS PALSAR RTC HR DEMs [36]. Similarly, SRTM 90 
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m DEM is assessed with the ICESat-2 altimetry data in 
regions of Australia for bare ground as well as areas with tree 
cover and vegetation heights, concluding in improved 
accuracy in plain areas comparable to SRTM DEM and 
showing positive differences in vegetation areas for ATL08 
product [37]. The open-access DEMs like TanDEM-X and 
CartoDEM are assessed for ICESat-2 data and it is also used 
for retrieval of building heights in urban and rural areas [38], 
[39]. 

The main objective of this research study is to develop a 
DEM fusion and improvement framework using the neural 
network models for complex terrain of the North-East region 
of India in the states of Assam and Meghalaya. The study 
utilizes the ALOS PALSAR Radiometrically Terrain 
Corrected (RTC) high-resolution (HR) 12.5 m DEM and 
TanDEM-X 90 m DEM in the ANN-based fusion framework 
for implementing the DEM fusion and their improvement. 
The evolvement of machine learning and neural network 
modelling has provided a whole new perspective in finding 
solutions for remote sensing and signal processing problems. 
The adaptive learning and universal approximation of the 
neural network models provide scope for developing methods 
and tools for DEM fusion to improve the quality of DEMs. 
Further, the use of the precise elevation information from 
ICESat-2 can be explored in the development of ANN-based 
fusion approaches specifically for Indian study sites. 

 

II. LITERATURE REVIEW 
An Artificial Neural Network (ANN) or simply Neural 

Network (NN) belongs to the subset class of Machine 
Learning. The fundamental unit of a NN model is a neuron 
that is analogous to the biological neurons and it acts in the 
same way as a human brain works. The simplest structure of 
a NN model contains several layers which are interconnected. 
It possesses the special characteristics of adaptative learning 
and universal approximation. This makes these models highly 
effective to be used as a tool for solving several practical 
problems in domains like remote sensing and signal 
processing [40]. The first introduction of the neural network 
came forward from the work of McCulloch and Pitts in 1943, 
where they presented a single neuron that has two main parts, 
a net function (u) and an activation function (a). The net 
function is the summation of the weighted average of all the 
inputs and biases. The activation functions are mathematical 
equations (linear or non-linear) that transform the inputs to 
desired outputs (1). 

 
u = 	∑ w!y! +"

!#$ θ; 	a	 = 	f(u)   (1) 
 
Where u denotes the net function of the neuron giving a 

summation of inputs yj multiplied by weights wj and θ is the 
threshold or bias used in the model and a is the activation 
function.  

The neural networks are a non-linear and non-parametric 
computational model that can handle the complex 
relationship between variables. The structure of a neural 
network consists of the parallel combination of the input 
layer, hidden layer(s) and an output layer. Each layer has a 
neuron unit that works parallelly to convert the input to the 

desired output. The ANN operates by receiving input 
information from the outside world through the input layer, 
which is passed to the next connected layer called the hidden 
layer. The hidden layer uses a transfer or activation function 
for transforming the input into a meaningful output. The input 
data contains values of attributes/features of different samples 
that belong to different classes. The edges of each connection 
are assigned with random weights initialized arbitrarily based 
on the importance of the inputs having an influence on the 
outputs. The activation functions are the mathematical 
equations which are differentiable in a definite range that 
computes the sum of the product of weights and inputs with 
biases. The activation function checks whether a neuron 
should be activated or not if the value of a neuron crosses the 
threshold. The most commonly used activation functions are 
Sigmoid (logsig, tansig), Hyperbolic tangent (tanh), Linear, 
Rectified Linear unit (ReLU), Softmax and so on [40], [41]. 
The term Forward Propagation explains the phenomena of 
data traversing through the network from input to output layer 
via hidden layers. The network finally produces an error 
between the reference or target output and the predicted 
output.  

The backpropagation algorithm was first proposed in the 
Widrow-Hoff gradient descent procedure during the 1960s. 
The behaviour of a single neuron was studied and it was 
found that the learning of a neural network is useful in 
reducing the error to the greatest extent possible. The 
backpropagation defines the way in which the gradient is 
computed for the non-linear networks. Several 
backpropagation algorithms are developed and used 
nowadays, the standard one being the gradient descent 
algorithm. The gradient is referred to as the direction of the 
steepest descent for the learning algorithm to fetch the global 
minima from several local minima [42]. During 
backpropagation, the gradient of error is calculated and 
weights are updated. The gradient of error is an indication of 
the change in error in relation to the change in weights. 

 
w%!
&(t + 1) = w%!

&(t) + η.∑ δ%&(k)z!&'$(k)(
)#$ + 	µ6w%!

&(t) −
w%!
&(t − 1)8 + ε%!&(t)    (2) 

 
Here, the updated weight 𝑤*+, (𝑡 + 1) is given by the 

summation of weight at instant t 𝑤*+, (𝑡) (first term of above 
equation), the gradient of the mean square error with respect 
to weight 𝑤*+,  (second term), momentum (third term) and the 
delta error (fourth term) on the right side of equation 2. The 
relation between momentum and error gradient is such that, 
momentum is gained when the error gradient vector indicates 
in the same direction for each successive epoch. The learning 
rate (η) and momentum (μ) lie in the range of 0 to 1. The 
learning rate is generally selected between 0 to 0.3 and kept 
smaller. The momentum values are selected between 0.6 to 
0.9 as suitable to run the backpropagation algorithm.  

A Feed-Forward Multilayer Neural Network finds 
applications in solving classification, regression, pattern 
recognition and prediction problems. The best-fit model is 
designed by applying a heuristic approach to exactly find the 
number of hidden layers, neurons of each layer, type of 
transfer function, type of neural network, type of 
backpropagation algorithms, selection of optimizer and other 
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model parameters (such as batch size, epochs. learning rate 
and momentum), that will be suitable for a particular 
application [43], [44]. The MATLAB Neural Network 
Toolbox (nntool) provides a platform for developing and 
implementing the neural network-based fusion approach in 
this research study. This commercial software has in-built 
applications for designing several types of neural network 
models such as the classification learner, deep network 
designer, neural network fitting, regression learner and 
pattern recognition networks. The training and target data 
samples are preprocessed and applied in the form of input and 
target matrix sequentially or concurrently. These input and 
target vectors are used to train the designed model until input 
vectors are associated with output vectors. The transfer 
functions can be chosen from the available linear (purelin) 
and sigmoid (logsig and tansig) activation functions. It is 
equipped with more robust and faster converging 
backpropagation algorithms other than the standard gradient 
descent. Other available variations of basic algorithms having 
variable learning rates are batch gradient descent 
without/with momentum (TRAINGD, TRAINGDM), 
resilient backpropagation (TRAINRP) and algorithms using 
numerical optimization like conjugate gradient (TRAINCGF, 
TRAINCGB, TRAINSCG), Quasi-Newton (TRAINBGF) 
and Levenberg Marquardt (TRAINLM). Among these, the 
fastest converging is the Levenberg-Marquardt algorithm and 
it works best on function approximation problems. The 
TRAINLM algorithm is highly useful in training typical 
feedforward networks which has the performance function in 
the form of the sum of squares of the input values. It can 
approach the second-order training speed without having to 
compute the Hessian matrix [45]. 

There has been extensive use of machine learning and 
neural network models in the remote sensing domain for 
solving several practical problems like classification, feature 
extraction, object detection, regression, and making 
predictive modelling. Several researchers have used ANN 
models in the improvement of digital elevation models and 
performed the fusion of DEMs. A fusion framework is 
designed using ANN as a predictive weight mapping model 
for weighted averaging to perform the fusion of TanDEM-X 
and Cartosat-1 elevation datasets in different sub-classes of 
the urban area of Munich, Germany [15]. The SRTM DEM is 
improved in another study by combining it with Sentinel-2 
multispectral data in an ANN model specifically for flood 
modelling applications in dense urban cities of Nice (France) 
and Singapore resulting in an improved SRTM with a 38% 
reduction in RMSE [16]. Along with these study sites, the 
open-access SRTM DEM is improved using an ANN-based 
approach for the coastal areas of the US and Australia by 
employing a multilayer perceptron model. It has used the 
LiDAR data as ground truth to train the model and in addition 
to vegetation cover indices, variables like neighboring 
elevation values, slope values, population density and height 
errors between the local SRTM and ICESat data were used. 
The obtained RMSE from this study were reduced by one-
half at both locations [46]. 

An alternative to the interpolation technique is developed 
using MATLAB-based multilayer perceptron models to 
estimate the unknown heights in a DTM [47]. Developing a 
cost-effective method for deriving a good quality DEM in the 

dense urban city of Nice and Singapore a multi-channel CNN 
(Convolutional Neural Network) model was used. Here, the 
SRTM DEM quality is improved by combining the 
information from Sentinel-2 and Google satellite images as 
input data and high-precision DEM as target data in a U-Net 
structure of the CNN model designed in the Deep Learning 
toolbox of MATLAB. The improvement of SRTM DEM has 
attained an RMSE of 4.8 m reduced to almost half of the 
RMSE of the original DEM [48]. A recent study has shown 
the implementation of an ANN-based DEM fusion approach 
in plain and hilly terrains of India including study sites from 
Ghaziabad and Dehradun cities. This study is based on firstly, 
the generation of multiple InSAR DEMs for the two regions 
and further, improving the DEM by fusion using DEM 
derivatives as well as land use land cover classes of the 
regions as input data and ICESat-2 altimetry as a reference or 
target data. Models were designed using a programming-
based ANN sequential model in Keras and MATLAB NN-
toolbox. The RMSE is estimated using TanDEM- X 90 m 
DEM is about 3.46 m in plain terrain region and 10.95 m in 
hilly undulating terrain region in contrast to higher RMSE 
values for input DEMs [49]. 

Although the literature survey shows extensive use of 
machine learning and ANN models for developing fusion 
frameworks, no such work has been implemented on the 
Indian study sites. This research work is an attempt to study 
the diverse terrain of the Indian geographic region and hence, 
produce high-quality DEMs that can be applied as a key input 
to various remote sensing applications. The focus of this 
research work is to develop neural network-based fusion 
frameworks for SAR-based DEM fusion, and DEM 
improvement in the complex terrains of the North-eastern 
Himalayan region of India. The wide number of applications 
for high-quality DEMs emphasizes the requirement of 
methods/models that can produce high-quality DEM fusion 
techniques. 

 

III. STUDY AREA AND DATASET USED 

A. A. Study Area 
The study area from the North-Eastern Himalayan Region 

of India is selected which covers several districts of Assam 
and Meghalaya states (Fig.1). The geographic extent of this 
region covers from 25.40’ to 26.85’ N Latitude and 91.61’ 
and 93.07’ E Longitude. The study site has Darrang, Kamrup, 
Karbi, Anglong, Marigaon, Nagaon, Nalbari, North Cachar 
Hills, Guwahati, Tezpur, Lakhimpur and Sonitpur districts 
from the state of Assam while East Khasi Hills, Jaintia Hills, 
Ri-Bhoi, West-Khasi hills are included from the Meghalaya 
state. 

The region of Assam includes the Northern Himalayas, 
Brahmaputra plain and plateau in the southern parts. The 
geomorphology of this area can be described as having large 
plains and dissected hills across the region. The Brahmaputra 
River which is older than the Himalayas is the antecedent 
river that flows through this state. Crossing higher altitudes 
and eroding at a greater pace, the river forms steep gorges and 
creates floodplains in the region of Brahmaputra valley. 
Assam has a temperate and tropical rainforest-type climate 
and observes heavy rainfall with humidity. The average 
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height of the hills in this area ranges from 300 to about 2000 
m. This region is highly prone to natural disasters due to high 
rainfall, deforestation and other factors leading to annual 
floods. The region has also observed several earthquakes and 
mild tremors, which are common. 

On the other hand, the Meghalaya region has the 
geologically important Shillong plateau. Several faults such 
as the Dauki in the south, Kopili to the east, Brahmaputra 
fault in the north and Dubri in the west bounds this region. 
The river Brahmaputra separates this site from the Indo-
Myanmar Mobile belt and the eastern Himalayas. The 
geology of this region contains the oldest rocks from the 
Precambrian gneissic complex to the new alluvium 
formations. This region observes active tectonic activities 
caused by the collision of the Indian plate and Tibetian 
landmass in the north and the east. There is a subduction 
process experienced in the Shan Tenasserim block and the 
Indian plate. This site is also prone to erosions as well as 
continuous upliftment. Geologically, this region comprises 
different types of rocks like the Khasi greenstone, Granite 
pluton in lower Gondwana, Sylhet trap in the Therriaghat 
river, and so on. The range of elevations across the whole 
study area varies from the lowest at 1 m to the highest peaks 
at 2000 m (approx.). 

 
Fig. 1. Study area map: (a). India; (b). Meghalaya and Assam state; and (c). 

The extent of the study area in the Meghalaya and Assam region with 
overlaid DEM. The legend depicts the elevation value of DEM. 

 
 

TABLE I: DATASET USED AND THEIR SPECIFICATIONS 
Product used Purpose Specifications Product IDs of DEM tiles with date 

1. ALOS PALSAR RTC 
HR 12.5 m DEM 

Input DEMs to be 
fused 

Sensor- ALOS (Advanced Land Observing Satellite) PALSAR 
(Phased Array type L band SAR) 
Wavelength- L band (24.6 cm) 

Spatial Resolution- 
12.5 m HR (High-Resolution) 

RTC (Radiometrically Terrain Corrected) Product 
Polarization- Full Beam Single (FBS); HH polarization 

Beam Mode- 
Ascending 

Input DEM 1: 
ALPSRP055520520 (08/02/2007) 
ALPSRP055520510 (08/02/2007) 
ALPSRP055520500 (08/02/2007) 
ALPSRP058000520 (25/02/2007) 
ALPSRP058000510 (25/02/2007) 
ALPSRP058000500 (25/02/2007) 
ALPSRP053770520 (27/01/2007) 
ALPSRP080610510 (30/07/2007) 
ALPSRP080610500 (30/07/2007) 

Input DEM 2: 
ALPSRP115910520 (28/03/2008) 
ALPSRP115910510 (28/03/2008) 
ALPSRP115910500 (28/03/3008) 
ALPSRP104970520 (13/01/2008) 
ALPSRP104970510 (13/01/2008) 
ALPSRP104970500 (13/01/2008) 
ALPSRP107450520 (30/01/2008) 
ALPSRP107450510 (30/01/2008) 
ALPSRP114160500 (16/03/2008) 

2. TanDEM-X 90 m DEM 

DEM improvement 
in geometric 

distortion areas, 
Accuracy 

assessment of fused 
output DEM 

Sensor- TanDEM-X active microwave sensor 
Wavelength- X-band (0.35 cm) 

Spatial Resolution- 90 m 
Absolute Vertical and Horizontal accuracy- 10 m (approx.) 

Projection system and datum- World Geographic System; WGS 84 

TanDEM-X 90 m DEM product used for 
Meghalaya and Assam region: 

 
TDM1_DEM_30_N25E091 
TDM1_DEM_30_N25E092 
TDM1_DEM_30_N25E093 
TDM1_DEM_30_N26E091 
TDM1_DEM_30_N26E092 
TDM1_DEM_30_N26E093 

3. ICESat-2 altimetry data 

Reference data in 
neural network 

training; Accuracy 
assessment of 
Fused output 

DEMs 

Sensor/Detector- Spaceborne altimetry/Laser photon counting 
Wavelength- 532 nm 

Orbit inclination and coverage- 92˚; covering up to 88˚ N to -88˚ S 
latitude 

Tracks available- 6 tracks from one laser beam in three pairs; each 
pair having a strong and weak laser beams 

Footprint diameter- 17 m 
Along-track & Across-track spacing- 0.7 m and 3 km (between the 

3 pairs) respectively; 90 m (within each pair) 
Product used- ATL08 Land and Vegetation heights 

Track IDs used: 
 

553 (strong and weak), 
821 (strong and weak), 
1384 (strong and weak) 

4. SOI Toposheets 

Check for the 
elevation ranges of 

Fused output 
DEMs 

Type- Open Series Maps 
Scale- 1:50000 

Toposheet numbers: 
78N/9,10,11,12,13,14,15,16; 

78O/9,10,11,13,14,15; 
83B/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8

3C/1,2,3,5,6,7,9,10,11,13,14,15 
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This study area is selected due to its geological and 
geomorphological importance. It is useful to research and 
obtain an improved elevation model for such complex 
terrains including large river flood plains as well as highland 
plateaus. The obtained improved DEMs are crucial in various 
disaster risk monitoring, management, and infrastructure 
planning applications. Moreover, the use of precise ICESat-2 
photon data in the fusion and improvement of open access 
SAR-based DEMs is studied. DEM improvement is useful in 
the areas affected by foreshortening, layover, and shadow 
distortions which can be observed in complex terrain like the 
North-East Himalayan region of India. 

A. Dataset 
The high-resolution (HR) L-band SAR DEMs from the 

ALOS PALSAR RTC 12.5 m DEM products are processed 
in the neural network fusion framework to obtain the fused 
output DEMs with improved accuracy. The global open-
access TanDEM-X 90 m DEM [50] is processed in the neural 
network framework for the improvement of existing DEM in 
the areas affected by geometric distortions. The ICESat-2 
spaceborne altimetry photon data is used as target elevation 
for providing accurate training of the neural network models. 
This is also used in point-based accuracy assessment of the 
fused DEMs produced from the neural networks in plain and 
mountainous portions of the study area separately as well as 
for the whole region. The precise ICESat-2 data is used in 
assessing the percentage improvement of TanDEM-X 90 m 
DEM over the areas affected by foreshortening, layover and 
shadows. The toposheets from the Open Map Series product 
from the Survey of India (SOI) are referred to check the 
correct range of elevations in the fused outputs. 

The details of the datasets are provided in Table I along 
with the sensor and data specifications. Several tiles covering 
the study area from ALOS PALSAR RTC HR 12.5 m DEM 
products are used, three laser tracks of ICESat-2 ATL08 Land 
and Vegetation product are used as a reference and precise 
TanDEM-X 90 m DEM is improved over the geometric 
distortion affected areas. 

The map in Fig. 2 depicts the input ALOS PALSAR RTC 
12.5 m HR DEMs (ALOS DEM 1 and ALOS DEM 2) to be 
fused using the ANN-based approach. Two input DEMs are 
processed here, and the ICESat-2 ATL08 footprints 
distributed over the study area provide the precise reference 
elevation values to carry out the study. The elevation values 
in this region range from a low of -47 m to as high as 1918 
m. This study site comprises a plain portion around the Assam 
valley region which is also referred to as the Brahmaputra 
floodplain having lower elevation values (depicted in blue 
colour in Fig. 2 and Fig. 3). On the other side, it also contains 
the Meghalaya highland plateau region, which is a 
tectonically active area and has various hills with higher 
values of elevation (lower left portion depicted in red to green 
colours in Fig. 2 and Fig. 3). 

 
Fig. 2. ALOS PALSAR RTC 12.5 m DEMs* with ICESat-2 footprints (* 

value in the legend refers to the elevation values for the DEMs). 

 
Fig. 3. ALOS PALSAR DEM 3D image (rotated) for the depiction of 

complex terrain in the Meghalaya and Assam region. 
 

IV. METHODOLOGY 
The steps followed for developing the DEM fusion 

framework and improving the existing DEM are shown in fig. 
4. Two independent processes are performed here first for the 
fusion of ALOS PALSAR RTC HR 12.5 m DEMs in the 
Assam and Meghalaya region, and second for the 
improvement of TanDEM-X 90 m DEM in areas affected by 
foreshortening, layover, and shadow regions. 
 

 
Fig. 4. Flowchart of ANN-based DEM fusion and improvement framework. 

 
The neural network fusion framework is developed for the 

fusion of SAR-based DEMs from ALOS PALSAR RTC 12.5 
m products. Several tiles of this product are accessed and 
downloaded from the ASF (Alaska Satellite Facility) vertex 
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data search tool covering the study area. These products are 
mosaicked and a subset is taken for producing the input 
DEMs. The training samples for the NN are prepared by 
extracting the elevation values from the input DEMs at every 
ICESat-2 footprint location and estimating the height 
residuals by subtracting the elevation values from the 
reference ICESat-2 elevations. The training data is filtered 
using the values within the range of the second standard 
deviation of the mean for removing the outliers. The 
appropriate NN model architecture is selected by applying a 
heuristic approach in several iterations. The Feed-Forward 
Network with Backpropagation algorithm is selected for each 
of the fusion processes implemented on the complete study 
site as well as the plain and mountainous portions separately. 
The faster converging TRAINLM (Levenberg Marquardt) 
backpropagation algorithm is used here with different 
suitable transfer/activation functions in plain and 
mountainous regions distinctly. The target samples are 
prepared from the precise reference elevation values from the 
ICESat-2 ATL08 product, which is distributed across the 
study area. Similarly, these data samples are separated into 
the plain and mountain portions for evaluating the two types 
of terrains independently. The trained model is then simulated 
on new data samples which are not included in the training 
samples. The elevation values of the fused DEMs are checked 
with the toposheets of the region to check the correct range. 
The fused DEMs are analyzed for accuracy assessment using 
the ICESat-2 altimetry data in a point-based assessment on 
near-ground points (having height error in the range of 0 to 
0.5 m) and using TanDEM-X 90 m DEM for area-based 
assessment by calculating it's ME (Mean Error) and RMSE 
(Root Mean Square Error). 

Due to the complex hilly terrain in this study area, the 
DEMs are affected by geometric distortions such as 
foreshortening, layover and shadows in the SAR images. The 
global open-access TanDEM-X 90 m DEM is improved using 
the neural network model. The training data includes the 
elevation values from the TanDEM-X 90 m DEM and the 
target data samples include the precise ICESat-2 altimetry 
elevation data. The Linear transfer function is used in a Feed-
Forward neural network using TRAINLM backpropagation 
algorithm. The relationship between the training and target 
data is modelled and predictions are made for the improved 
DEM. The obtained values are checked with the range given 
in toposheets and these are evaluated to find the percentage 
improvement. The statistical parameters used for the 
accuracy assessment of the results include the mean error 
(ME), root mean square error (RMSE), and percentage 
improvement factor (%IF). Mathematically, the mean error is 
simply the average of the sum of all errors (3) while RMSE 
measures the spread out of errors and is given by the square 
root of the average of the squared differences between the 
predicted and the reference values (4). Further, the percentage 
improvement factor accounts for the amount of improvement 
achieved in output over the input and is given by the 
percentage of input RMSE to the RMSE of predicted output 
(5) [51]–[54]. 
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Where 𝑯𝒊(𝑰𝒏𝒑𝒖𝒕) is the elevation values of input DEMs, 
𝑯𝒊(𝑹𝒆𝒇	) is the reference elevation values, 𝑯𝒊(𝒇𝒖𝒔𝒆𝒅) is the 
Fused output DEM elevation values and n denotes the number 
of observations in (3), (4) and (5). 
 

V. RESULTS 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
Fig. 5. ANN Model for Meghalaya and Assam (Plain) region (a). Model 

Architecture; (b). Model parameters; (c). Best performance while training; 
(d). Training state of the model; (e). Regression plot between target and 

output data. 
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(a) 

 
(b) 

 

 
(d) 

 

 
(e) 

Fig. 6. ANN Model for Meghalaya and Assam (Hilly) region (a). Model 
Architecture and Model parameters; (b). Best performance while training; 
(c). Training state of the model; (d). Regression plot between target and 

output data. 
 

The framework of DEM fusion and DEM improvement is 
developed using the adaptive learning capability of neural 
networks. Different architectures of the models are designed 
as suitable for modeling the complex terrain of the complete 
region and in plain and mountainous portions separately. A 
simple model with two hidden layers having 10 units in each 
layer is used to model the fusion framework for the complete 
study area (Fig. 5). 

The Linear transfer function (PURELIN) models the 
terrain appropriately. A total of 22767 data samples 
distributed across the study region are prepared for training 
the model. The total data samples are divided into training, 
validation and testing samples by the ‘dividerand’ function in 
the ratio of 70:15:15 randomly. The loss parameter selected 
for checking the training performance is Mean Squared Error 
(MSE). The neural network model architecture, model 
parameters, training performance and regression plot between 
the target and output data are shown in Fig. 5. The 
relationship between the training and target samples from the 
ICESat-2 photon data is modelled and fused output DEMs are 
obtained using this model for the complete and plain portion 
of the study area. 

Similarly, in the Meghalaya plateau region which is having 
a complex undulating mountainous terrain the model 
architecture designed is having two hidden layers with a 
comparatively large number of neurons (64 and 128 neurons 
in the first and second hidden layer respectively). The purelin 
that is the Linear transfer function is useful in this type of 
terrain modelling. The model structure used along with model 

parameters, performance while training and the regression 
plot is shown in Fig. 6. 

The fused output DEMs obtained from the developed 
fusion framework are assessed in terms of ME and RMSE for 
accuracy using the ICESat-2 altimetry data in a point-based 
assessment (TABLE II). The RMSE of Fused output DEMs 
has reduced significantly to 7 m as compared to the 11 m of 
RMSE of input DEMs for the complete study site. While 
fused DEMs are improved over the plain portion around the 
Assam Valley region with an RMSE of 3.82 m in contrast to 
the 5.14 m RMSE of the input DEM. The value of RMSE has 
also reduced in the mountainous portion of the Meghalaya 
plateau region with an RMSE of 8.18 m for the fused DEM 
in contrast to 15.35 m RMSE of the input DEMs. 

 
TABLE II: RESULTS FOR FUSED DEMS FROM THE ANN MODEL 

PREDICTIONS USING ICESAT-2 DATA IN MEGHALAYA AND ASSAM REGION 
Total ICESat-2 footprints (22767 sample points) 

 Input DEM 1 Input DEM 2 Fused DEM 

ME (m) 7.72 7.74 0.03 
RMSE (m) 11.12 11.11 7.00 

Plain Area (12175 sample points) 

ME (m) 3.21 3.20 -0.03 
RMSE (m) 5.14 5.12 3.82 

Mountainous Area (10591 sample points) 

ME (m) 12.91 12.95 -0.01 
RMSE (m) 15.35 15.34 8.18 

 
Further, the area-based accuracy assessment is performed 

over a test subset area in plain and hilly regions separately 
and evaluating the results with TanDEM-X 90 m DEM. The 
plain test area attained an RMSE of 2.21 m for fused DEM in 
contrast to 2.5 m of input DEMs. The fused output DEM 
produced in the plain region using the ANN-based fusion 
framework is represented in Fig. 7. The values of elevation in 
the fused DEM are within the correct range of elevations as 
checked from the toposheets of this area. Similarly, the 
complex terrain around the Meghalaya plateau region is also 
modelled using the fusion framework. This being a very 
highly undulating terrain having large variations in elevation 
from 900 to 1800 meters (approx.), the fused DEM obtained 
in this region contains some artefacts/voids, which are 
attempted to remove by estimating focal statistics such as 
mean and removing the no data values (Fig. 8). However, a 
more suitable interpolation technique can be used for 
removing these artefacts/defects in the output completely. 

 
Fig. 7. Fused Output DEM (3D view) from ANN-based fusion approach in 

the plain portion of Meghalaya and Assam region 
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Fig. 8. Fused Output DEM (3D view) from ANN-based fusion approach in 

the mountainous portion of Meghalaya and Assam region. 
 

The global openly available SAR-based TanDEM-X 90 m 
DEM is improved using the neural network models. The 
training data includes a total of 22994 points with the 
TanDEM-X DEM elevations as input data and the target data 
samples have the reference elevation of ICESat-2 ATL08 
data. The underlying terrain is modelled using a single hidden 
layer structure with 10 units and using a linear activation 
function with TRAINLM algorithm (Fig. 9). The model 
parameters and performance while training are depicted in 
Fig. 9. Further, the plain and mountainous portion sample 
points are separated and assessed for accuracy. 

 

 
(a) 

 

 
(b) 

 

 
(d) 

 

 
(e) 

Fig. 9. ANN Model for Meghalaya and Assam region for improvement of 
TanDEM-X 90 m DEM (a). Model Architecture and Model parameters; (b). 

Best performance while training; (c). Training state of the model; (d). 
Regression plot between target and output data. 

 

The near-ground points are also assessed for checking the 
accuracy and improvement of the existing DEM (Table III). 
The point-based accuracy assessment infers that in terms of 
RMSE the improved DEM has obtained a value of 7.42 m in 
contrast to 11.2 m showing a percentage improvement of 
34% over the input DEM. The percentage improvement in 
plain and mountain regions separately is around 21.57% and 
37.13% respectively. The accuracy assessment on the near-
ground points has shown a remarkable improvement of 
46.76% in the plain portion of the study area and 54.59% in 
the mountain portion of the study area. 
 
TABLE III: RESULTS ON THE IMPROVEMENT OF TANDEM-X 90 M DEM IN 

THE MEGHALAYA AND ASSAM AREA 
Total ICESat-2 footprints (22994 points): 

 Input TDM ANN Prediction % IF 
RMSE (m) 11.21 7.42 33.83 

Plain Area Points: 

RMSE (m) 4.64 3.64 21.57 

Mountainous Area Points 

RMSE (m) 14.07 8.85 37.13 

Near Ground Points (having 0 to 0.5 m height error) 

Plain Area Points 

RMSE (m) 0.26 0.14 46.76 

Mountainous Area Points 

RMSE (m) 0.29 0.13 54.59 

 

VI. CONCLUSIONS 

The artificial neural network (ANN) based fusion 
framework is developed for DEM fusion and DEM 
improvement in the North-eastern Himalayan region of India. 
The MATLAB NN-toolbox is an efficient platform for 
designing and implementing DEM fusion frameworks. The 
neural network structures designed for the modeling of such 
hybrid terrain having one part as plain topography and the 
other as mountainous type topography are implemented 
successfully. The results obtained for the complex and 
diverse terrain of the Meghalaya and Assam region with the 
developed models have shown a significant improvement in 
terms of RMSE and percentage improvement factor. The 
specialty of ANN models in handling non-linear data with 
universal approximation and adaptive learning has proven to 
be an efficient and effective tool for DEM fusion and DEM 
improvement in the north-eastern Himalayan region of India. 
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