Null Hyper-Parasitism, a Threat for Successful Biological Control Management


  •   S. G. Borkar


Null hyper-parasitism, a new term is coined by the author to define the hyper-parasitism by a microbial agent on another hyper-parasite. The novel phenomenon of null hyper-parasitism was discovered in the in vitro and in vivo experimentation, where the bio-control agent Trichoderma hamatum hyper-parasitic on Sclerotium rolfsii, a foot rot pathogen of groundnut, was hyper-parasitiosed by a microbial strain of Aspergillus niger and Bacillus thermophillus. Here A. niger and B. thermophillus as null hyper-parasite nullified the bio-control action of hyper-parasite Trichoderma hamatum on Sclerotium rolfsii. The in vivo experimentation suggest that such type of null hyper-parasitism exist in soil ecosystem, may be to maintain the natural microbial equilibrium and extinction of a microbial species from nature due to presence of hyper-parasite and its antagonistic or bio-control activity as evident in the above case of parasite/pathogen S. rolfsii, its hyper-parasite T. hamatum and null hypersite A. niger and B. Thermophillus. Now, therefore the success of the bio-control or hyper-parasitism of soil borne fungal plant pathogen by Trichoderma sp may be dependent on the non- existence of null hyper-parasite in the soil ecosystem where the hyperparasite has to be used.

Keywords: Null hyper-parasitism, hyper-parasitism, biocontrol agent, Trichoderma sp, Sclerotium rolfsii, Aspergillus niger, Bacillus thermophillus, soil ecosystem, Threat, biological control


Chet, I., Elad, Y and J. Ketan. 1980. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii, Fusarium oxysporum and Rhizoctonia solani. Phytopathology. 70(2): 119- 121.

Basak, A. B and Min Wong Lee. 2002. Antagonistic effects of Trichoderma spp T2 on three soil borne diseases of cucumber. Indian J. Plant Pathology. 20(1 &2): 15-21.

Kapoor, A. S. 2008. Biocontrol potential of Trichoderma spp against important soil borne diseases of vegetable crop. Indian Phytopath. 61(4): 492-498.

Kehri, H. K and S. Chandra. 1991. Antagonism of Trichoderma viride to Macrophomina phaseolina and its application in the control of dry rot of mung. Indian Phytopath. 41: 60-63.

Monaco, C., Perello, A., Allippa, H. E and A. D. Pasquare. 1992. Trichoderma spp: A biological control agent of Fusarium spp and Sclerotium rolfsii by seed treatment. Advances in Horticulture Sciences. 5: 92-95.

Prasad, R.D and R. Rangeshwaran. 2001. Biological control of root rot and collar rot of chickpea caused by Sclerotium rolfsii. Annals of Plant Protection Sciences. 9(12): 297-303.

Manjula, K., G. K. Krishna., A. G. Girish and S. D. Singh. 2004. Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Journal of Plant Pathology. 20 : 75-80

Duffy, B. K., B. H. Ownley and D. M. Weller.1997. Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology. 87(11): 1118-1124.

Van Veen, J.A., L. S. Van Overbeek, and J.D. Van Elsas. 1997. Fate and activity of microorganism introduced into soil. Microbiology and Molecular Biology Reviews. 61(2): 121-135.

Wieland, G., R. Neumann and H. Backhaus. 2001. Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Applied and Environmental Microbiology. 67(12) 5849-5954.

Knudsen, G. R. and L. M. C. Dandurand. 2014. Ecological complexity and the success of fungal biological control agents. Advances in Agriculture, vol.2014, 11 pages.

Ojiambo, P. S and H. Scherm. 2006. Biological and application oriented factors influencing plant disease suppression by biological control: a meta analytical review. Phytopathology. 96(11): 1168-1174.

Nicot, P. C., C. Alabouvette., M. Bardin., B. Blum., J. Kohl and M. Ruocco. 2012. Review of factors influencing the success or failure of biocontrol: technical, industrial and socio-economic perspectives. Biological Control of Fungal and Bacterial Plant Pathogens. IOBC-WPRS Bulletin. Vol.78: 95-98.

Sekhar, Y. C., S. K. Ahammed., T. N. V. K. V. Prasad and R. S. J. Devi. 2017. Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut. International Journal of Science, Environment and Technology. 6(2): 2056-2063.

Mohammsd Manjur Shah and Hamisu Afiya. 2019. Identification and isolation of Trichoderma spp.- Their significance in agriculture, Human health, industrial and environmental application. IntechOpen access peer-reviewed chapter. Doi: 10.5772/intechopen.83528.

Frank M. Dugan. 2017. The Identification of Fungi: An illustrated Introduction with Keys, Glossary, and Guide to Literature. APS Publication, St. Paul, MN, USA.

Borkar. S.G. 2017. Laboratory Techniques in Plant Bacteriology. CRC Press, USA.

Venkatasubbaiah, P., Safeevlla, M., and R.K. Somshekhar. 1984. Trichoderma harzianum as a biocontrol agent for rhizoctonia solani, the incitant of collar rot of coffee seedlings. Proc Indian National Sci Academy. 50(5): 525-529.

Clavet, C., Pera, J., and J.M. Bareu. 1990. Interaction of Trichoderma sp with two wilt pathogenic fungi. Agriculture, Ecosystem and Environment. 29(1-4): 59-65.

Dantoff, L.E., Nemec, S.,and K. Pernezny. 1995. Biological control of fusarium crown rot of tomato in florida using Trichoderma harzianum and Glomus intraradices. Biological Control. 5(3) : 427-431.

Larkin, R. P and D. R. Fravel. 1998. Efficacy of various fungal and bacterial biocontrol organism for control of Fusarium wilt of tomato. plant disease. 82(9): 1022-1028.

Singh, R. K and R. S. Dwivedi. 1987. Studies on biological control of Sclerotium rolfsii causing foot rot of barley. Acta Botanica Indica. 15: 125-127.

Morshed, M.S. 1985. In vitro antagonism of different species of Trichoderma on some seed borne fungi of bean. Bangladesh J. Bot. 14(2) : 119-126.

Upadhyay, R. S and R. B. Rai. 1987. Studies on antagonism between Fusarium udum and root region microflora of pigeonpea. Plant Soil. 10: 79-93.

Jayalakshmi, S. K., Sreeramula, K., and V. I. Benigi. 2003. Effect of Trichoderma spp against pigeonpea wilt caused by Fusarium udum. J. Biological Control. 17(1): 75-78.

Borkar, S. G., Mandhare, V. K., Chaudhary, K. N., Patil, B. S and Bharti Verma. 1999. Antagonistic potential of thermophilic bacillus on Helminthosporium avenae, a leaf blight pathogen of wheat. Indian J.Plant Pathology. 17 (1 &2): 78-81.

Bin, L., Knudsen, G.R., and D. J. Eschen. 1991. Influence of an antagonistic strain of Pseudomonas fluroscens on growth and ability of Trichoderma harzianum to colonize sclerotia of Sclerotinia sclerotium in soil. Phytopathology. 81: 994-1000.

Marnyee, V. Cedeno., A. M. Farnet, G. Mata and J. M. Savole. 2007. Role of Bacillus spp in antagonism between Pleurotus ostreatus and T. harzianum in heat treated wheat straw substrates. Biosource Technology. 99(15): 6966-6973.

Hubbard, J. P., Harman, G. E and Y. Hadar. 1982. Effect of soil borne Pseudomonas spp on the biological control agent T. hamatum on pea seeds. Phytopathology.73:655-659.

Varshney, S., Chaube, H. S and H.B. Singh. 2000. Interaction between Fluroscent Pseudomonas and Trichoderma harzianum. Indian Journal of Plant Pathology. 18(1 & 2): 40-43.

El-Hassan, S.A., S.R. Gowen and B. Pembroke. 2013. Use of Trichoderma hamatum for biocontrol of lentil vascular wilt disease: efficacy, mechanism of interaction and future prospects. Journal of Plant Protection Research. 53: 12-26.

Mukherjee, A. K., A. Sampat kumar., S. Kranti and P. K. Mukherjee. 2014. Biocontrol potential of three novel Trichoderma strains: isolation, evolution and formulation. J. Biotech.4: 275-281.

Khirood Doley., Mayura Dudhane and Mahesh Borde. 2017. Biocontrol of Sclerotium rolfsii in groundnut by using microbial inoculants. Notule Scientia Biologicae. 9(1): 124-130.


How to Cite
Borkar, S. G. (2020). Null Hyper-Parasitism, a Threat for Successful Biological Control Management. European Journal of Environment and Earth Sciences, 1(5).